Pt REMD Supplementary data

Table S1: MCPB.py forcefield data

MASS M1 195.08 Y1 14.01 Y2 14.01 Y3 14.01 Y4 14.01	0.530 0.530 0.530 0.530)))	Pt ion sp2 N in sp2 N in Sp2 N in Sp2 N in	5 memb.ring 5 memb.ring pure aromat: pure aromat:	w/LP (H w/LP (H ic syste ic syste	HIS, ADE HIS, ADE ems ems	E,GUA) E,GUA)
BOND							
M1-Y3 107.	2 2.0597	Crea	ated by Se	eminario meth	nod usin	ng MCPE	3.ру
M1-Y4 107.	3 2.0594	l Crea	ated by Se	eminario meth	nod usin	ng MCPE	3.py
Y1-M1 127.	3 2.0562	2 Crea	ated by Se	eminario meth	nod usin	ng MCPE	3.py
Y2-M1 127.	3 2.0562	2 Crea	ated by Se	eminario meth	nod usin	ng MCPE	3.py
ANGL							
CR-Y1-M1	138.28	126.69	Created B	by Seminario	method	using	MCPB.py
CR-Y2-M1	136.04	126.68	Created B	by Seminario	method	using	MCPB.py
CV-Y1-M1	141.21	126.20	Created B	by Seminario	method	using	MCPB.py
CV-Y2-M1	139.67	126.19	Created 1	by Seminario	method	using	MCPB.py
M1-Y3-ca	169.55	120.57	Created B	by Seminario	method	using	MCPB.py
M1-Y4-ca	169.59	120.57	Created B	by Seminario	method	using	MCPB.py
Y1-M1-Y2	149.86	88.55	Created B	by Seminario	method	using	MCPB.py
Y1-M1-Y3	159.53	95.41	Created B	by Seminario	method	using	MCPB.py
Y1-M1-Y4	168.05	175.94	Created B	by Seminario	method	using	MCPB.py
Y2-M1-Y3	166.27	176.00	Created B	by Seminario	method	using	MCPB.py
Y2-M1-Y4	156.32	95.47	Created B	by Seminario	method	using	MCPB.py
Y4-M1-Y3	168.87	80.58	Created B	by Seminario	method	using	MCPB.py

Table S2: Pt-N distance statistics for Pt-Aβ16 (Å)

	Ave	SD	Min	Max
Pt-His6 N	2.062	0.058	1.771	2.352
Pt-His14 N	2.065	0.058	1.763	2.377

Table S3: Eigenvalues of the Rg-tensor for 300 K simulations (Å²)

	Pt-Aβ16			Pt-Aβ42		
	Eig1	Eig2	Eig3	Eig1	Eig2	Eig3
Ave	9.50	19.14	55.90	18.24	32.49	97.99
SD	1.58	4.53	15.22	3.73	6.61	45.23
Max	18.96	40.58	101.56	34.77	86.65	649.76

Figure S1: Structure of complex with Eig3 = 650 \AA^2

1	l-16		1-42						
1	6.0558		1	12.6565		23	8.2632		
2	3.9262		2	10.1557		24	6.8617		
3	3.5999	1	3	9.0047		25	5.7062		
4	4.3778		4	8.6911		26	4.9609		
5	5.0238		5	8.2984		27	6.1602		
6	2.9798		6	5.2059		28	7.1622		
7	3.3004		7	7.0491		29	4.4072		
8	2.8331		8	6.6011		30	4.9004		
9	2.3164		9	6.23		31	7.075		
10	3.3683		10	7.4542		32	6.4524		
11	2.8378		11	6.0822		33	5.2601		
12	2.7178		12	7.9379		34	7.6428		
13	3.3749		13	7.6998		35	8.708		
14	2.7071		14	4.5638		36	7.2621		
15	3.3672		15	7.8232		37	7.6283		
16	5.01		16	9.2735		38	7.4299		
Pt	3.8089]	17	8.6368		39	8.2022		
phen	5.5910]	18	7.5109		40	8.6588		
]	19	7.9634		41	9.9994		
]	20	7.0989		42	12.0622		
]	21	6.4629		Pt	5.4906		
			22	7.4429		phen	8.2088		

Table S4: RMSF by residue

Table S5: salt bridge occurrence (%)

Pt-Aβ16	Asp1	Glu3	Asp7	Glu11
Arg5	6.2	76.3	7.1	8.3
Lys16	0.1	0.4	0.1	0.3

Pt-Aβ42	Asp1	Glu3	Asp7	Glu11	Glu22	Asp23
Arg5	25.0	34.4	33.4	13.8	13.2	0.1
Lys16	0.0	0.0	0.0	0.1	1.3	0.5
Lys28	0.0	0.0	0.0	0.0	11.0	10.3

Table S6:	Percentage	secondary	structure
-----------	------------	-----------	-----------

Pt-Aβ16	Coil	Para	Anti	3,10	Alpha	Pi	Turn	Bend
1	100	0	0	0	0	0	0	0
2	97	0	0	1	0	0	1	0
3	81	0	0	3	1	0	7	8
4	66	0	0	4	3	0	14	14
5	58	0	0	3	3	0	9	27
6	72	0	0	2	3	0	2	21
7	83	0	0	2	3	0	3	8
8	1	0	0	28	8	0	41	22
9	5	0	0	27	8	0	44	16
10	20	0	0	30	11	0	28	12
11	7	0	0	38	38	0	14	2
12	3	0	0	37	52	0	7	1
13	3	0	0	37	53	0	6	0
14	5	0	0	16	52	0	21	6
15	46	0	0	3	39	0	13	0
16	70	0	0	1	13	0	16	0

Pt-Aβ42	Coil	Para	Anti	3,10	Alpha	Pi	Turn	Bend
1	100	0	0	0	0	0	0	0
2	90	0	0	5	3	0	2	0
3	40	0	0	28	3	0	12	16
4	34	0	0	29	7	0	20	9
5	30	0	0	27	10	0	13	20
6	62	0	0	3	8	0	7	20
7	39	3	0	1	8	0	16	33
8	19	0	0	1	16	0	21	41
9	27	0	0	1	12	0	26	34
10	55	0	0	1	18	0	17	9
11	44	0	0	5	23	0	4	24
12	0	0	0	14	42	0	38	5
13	2	0	0	14	43	0	38	2
14	20	0	0	14	42	0	20	5
15	24	0	0	5	43	0	6	23
16	4	2	0	15	47	0	27	5
17	8	1	0	14	43	0	20	13
18	3	2	0	19	46	0	27	3
19	6	0	0	13	46	0	15	19
20	8	20	0	9	37	0	13	12
21	28	14	0	1	33	0	2	21
22	2	13	0	22	34	0	21	8
23	2	0	0	24	32	0	27	15
24	2	0	0	24	23	0	33	18
25	24	0	0	13	8	0	28	27
26	51	1	0	1	4	0	4	38
27	6	0	0	5	33	0	43	13
28	2	0	0	5	51	0	37	5
29	2	0	0	6	76	0	14	2
30	1	0	0	4	90	0	4	1
31	0	0	0	3	93	0	4	0
32	0	0	0	2	94	0	3	0
33	2	0	0	5	86	0	6	2
34	1	0	0	10	77	0	11	1
35	1	0	1	10	69	0	18	1
36	1	0	1	9	50	0	35	3
37	15	0	0	4	9	0	65	6
38	34	0	0	19	3	0	31	12
39	24	22	1	19	3	0	21	10
40	28	18	1	18	3	0	20	13
41	70	15	1	3	2	0	9	0
42	100	0	0	0	0	0	0	0

Table S7: Backbone hydrogen bond statistics i+4 --> i

1+4>1				
Donor	Acceptor	%age	Dist	Angle
GLY_29@O	GLY_33@N	37%	2.87	157.4
GLU_11@O	GLN_15@N	23%	2.87	157.5
ILE_32@O	VAL_36@N	21%	2.89	161.0
ALA_30@O	LEU_34@N	20%	2.89	157.3
LYS_28@O	ILE_32@N	17%	2.90	163.8
GLY_33@O	GLY_37@N	17%	2.87	152.4
GLN_15@O	PHE_19@N	15%	2.89	161.0
ILE_31@O	MET_35@N	15%	2.89	158.4
ALA_21@0	GLY_25@N	14%	2.85	153.9
LYS_16@O	PHE_20@N	13%	2.89	160.4
LEU_17@0	ALA_21@N	12%	2.89	158.5
SER_26@O	ALA_30@N	10%	2.89	158.1
TYR_10@O	HD2_14@N	10%	2.87	155.7
VAL_12@0	LYS_16@N	10%	2.89	159.4
ASP_7@O	GLU_11@N	7%	2.88	158.8
PHE_20@O	VAL_24@N	7%	2.90	161.6
PHE_19@O	ASP_23@N	7%	2.89	159.0
VAL_18@0	GLU_22@N	7%	2.89	158.7
HID_13@0	LEU_17@N	6%	2.90	160.2
ASN_27@O	ILE_31@N	5%	2.90	161.0
HD2_14@O	VAL_18@N	4%	2.90	161.2
PHE_4@O	SER_8@N	3%	2.89	160.6
GLY_38@O	ALA_42@N	2%	2.89	161.1

i+3 --> i

Donor	Acceptor	%age	Dist	Angle
GLU_11@0	HD2_14@N	17%	2.87	153.7
GLN_15@O	VAL_18@N	12%	2.89	152.4
GLU_3@O	HD1_6@N	11%	2.89	158.4
SER_26@O	GLY_29@N	8%	2.90	152.5
GLU_22@O	GLY_25@N	7%	2.90	153.3
ILE_32@O	MET_35@N	7%	2.90	149.3
ALA_21@O	VAL_24@N	6%	2.91	157.4
LEU_17@O	PHE_20@N	6%	2.90	155.3
LYS_28@O	ILE_31@N	6%	2.90	148.2
GLY_33@O	VAL_36@N	6%	2.91	151.4
GLY_38@O	ILE_41@N	4%	2.91	158.9
LEU_34@O	GLY_37@N	4%	2.91	152.4
GLY_29@O	ILE_32@N	4%	2.90	149.1
MET_35@O	GLY_38@N	4%	2.90	151.6
ILE_31@O	LEU_34@N	3%	2.91	149.4
LYS_16@O	PHE_19@N	3%	2.91	151.3
HD2_14@O	LEU_17@N	3%	2.91	154.7
ASN_27@O	ALA_30@N	3%	2.91	151.1

ASP_23@O	SER_26@N	3%	2.91	156.6
ASP_7@O	TYR_10@N	2%	2.89	148.5

i+5 --> i

Donor	Acceptor	%age	Dist	Angle
GLY_33@O	GLY_38@N	15%	2.87	151.7
LEU_34@O	VAL_39@N	4%	2.90	154.5
ALA_21@O	SER_26@N	2%	2.89	155.3