Supporting information

Pyrazolofused 4-azafluorenones as key reagents for the synthesis of fluorescent dicyanovinilydene-substituted derivatives

Jessica Orrego-Hernández,^a Carolina Lizarazo,^a Justo Cobo,^b and Jaime Portilla^{*,a}

^a Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia

^bDepartamento de Química Orgánica e Inorgánica, Universidad de Jaén, 23071 Jaén, Spain

*E-mail: jportill@uniandes.edu.co; Tel: +57 1 3394949. Ext. 2080

Contents

1.	Overview of Substrates, Intermediates and Products Numbering	S2
2.	Experimental procedures and characterization data	S4
3.	Supplementary Analytical Data (Identification of intermediate 5a)	S16
4.	Photophysical studies	S17
5.	Computational calculations	S18
6.	Fluorescent chemosensors 7a-d for detection of cyanide	.S23
7.	Copies of NMR spectra	S25
8.	ORTEP Drawing for Structure 7b	. S 54
9.	HRMS analysis data of the final products 7a-d	S55
1(References	S60

1. Overview of Substrates Intermediates and Products Numbering

1.1. Substrates 1, 2a-h, 3a-e, and intermediates 6h and 5a

Indan-1,3-dione 1, 4-R-benzaldehydes 2a-h and 3-alkyl-5-amino-1-aryl-1H-pyrazoles 3a-e

1.2. Products 4a-x and final products 7a-d

4-Aryl-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-ones **4a-h** and 4-Aryl-3-(tert-butyl)-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-ones **4i-o**.

Aryl-3-(*tert*-butyl)-1-(4-chlorophenyl)indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-ones **4p-v**, 1-(4-chlorophenyl)-3-methyl-4-phenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one **4w** 3-(*tert*-butyl)-1-(4-nitrophenyl)-4-phenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one **4x**, and 2-(4-aryl-3-methyl-1-phenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-ylidene)malononitrile **7a-d**.

2. Experimental procedures and characterization data

2.1. General information. All reagents were purchased from commercial sources and used without further purification, unless otherwise noted. All starting materials were weighed and handled in air at room temperature. The reactions were monitored by TLC and were visualized by UV (254 nm). Column and Flash chromatography was performed on silica gel (230-400 mesh or 70-230 mesh, respectively). All reactions under microwave (MW) irradiation were performed using a sealed reaction vessel (10 mL, max pressure = 300 psi) containing a Teflon coated stirring bar (obtained from CEM). MW-assisted reactions were performed in a CEM Discover focused microwave (v = 2.45 GHz) reactor, equipped with a built-in pressure measurement sensor, and with a vertically focused IR temperature sensor; controlled temperature, power, and time settings were used for all reactions. NMR spectra were recorded at 400 MHz (¹H) and 100 MHz (¹³C) at 298 K using tetramethylsilane (0 ppm) as the internal reference. NMR spectroscopic data were recorded in CDCl₃ and DMSO-d₆ using as internal standards the residual non-deuterated signal for ¹H NMR and the deuterated solvent signal for ¹³C NMR spectroscopy. DEPT spectra were used for the assignment of carbon signals. Chemical shifts (δ) are given in ppm and coupling constants (J) are given in Hz. The following abbreviations are used for multiplicities: s = singlet, d = doublet, t = triplet, and m = multiplet. Melting points were collected using a Stuart SMP10 melting point apparatus, and the acquired data are uncorrected. The mass spectra were recorded on a Hewlett Packard HP Engine-5989 spectrometer (equipped with a direct inlet probe) and operating at 70 eV, and the High Resolution Mass Spectra (HRMS) by electron impact were recorded on a Micromass AutoSpec-Ultima, magnetic sector mass spectrometer at 70 eV. HPLC-HRMS data were obtained on an Agilent Technologies Q-TOF 6520 spectrometer via an electrospray ionization (ESI, 4000 V). X-ray diffraction intensities were collected on a Bruker D8 Venture diffractometer. Crystallographic data were recorded on a diffractometer using graphitemonochromated Mo K α radiation (λ = 0.71073 Å). Structures were solved using an interactive algorithm,¹ subsequently completed by a difference Fourier map, and refined using the program SHELXL2014² and the graphic material was prepared using the Mercury 3.10 software.³ The electronic absorption spectra were measured on Varian Cary 100 Conc (Agilent Technologies) spectrophotometer in a quartz cuvette having a path length of 1 cm. The fluorescence emission spectra were recorded by using a CARY Eclipse (Agilent Technologies) fluorescence spectrophotometer in a quartz cell (1 cm path length). UV-vis and fluorescence measurements were performed at room temperature (20 °C). For fluorescence measurements, both the excitation and emission slit widths were 5 nm.

2.2. Synthesis and characterization

2.2.1. General Procedure for the synthesis of 3-alkyl-1,4-bis(aryl)indeno[1,2-b]pirazolo[4,3e]pyridin-5(1H)-ones **4a-x** and 2-(4-dimethylaminobenzylidene)indene-1,3(2H)-dione (**6h**). A mixture of equimolar quantities (0.25 mmol of each component) of indan-1,3-dione (**1**, **1**, 37 mg), 4-R-benzaldehyde **2**, and 3-alkyl-5-amino-1H-pyrazole **3** in water:triethylamine (0.7 ml, 15:1 v/v) was placed in a reaction tube of a CEM Discover, containing a magnetic stirring bar. The tube was sealed with a plastic MW septum and was irradiated at 80 °C (100 W, monitored by an IR temperature sensor) and maintained at this temperature for 10-25 min. The reaction mixture was cooled to 50 °C by airflow and then was partitioned between dichloromethane and water. The organic layer was washed with water and dried over anhydrous sodium sulfate. Subsequently, solvent was removed by rotary evaporation under reduced pressure and the residue was purified by flash chromatography on silica gel (eluent: CH₂Cl₂) to give the expected indenopirazolopyridin-5-ones **4a-x** and the intermediate **6h**.

3-Methyl-1,4-diphenylindeno[*1,2-b*]*pyrazolo*[*4,3-e*]*pyridin-5*(*1H*)-*one* (*4a*). By following the general procedure for 15 min, **4a** was obtained as yellow crystals (81.3 mg, 84%). Mp 225-227 °C (Lit.⁴ 220-221 °C). ¹H NMR (CDCl₃): δ = 2.05 (s, 3H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.40-7.47 (m, 3H), 7.50-7.62 (m, 7H), 7.96 (d, *J* = 7.4 Hz, 1H), 8.31 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): δ = 14.8 (CH₃), 115.6 (C), 120.0 (C), 121.4 (CH), 121.5 (CH), 123.4 (CH), 126.3 (CH), 128.0 (CH), 128.6 (CH), 129.0 (CH), 129.2 (CH), 131.4 (CH), 132.8 (C), 134.6 (CH), 137.4 (C), 139.0 (C), 142.4 (C), 145.8 (C), 145.9 (C), 152.8 (C), 165.1 (C), 189.9 (C); MS (EI) m/z 387 (M⁺, 100%), 386 45), 372 (5), 345 (5). HRMS (IE) m/z calcd. for C₂₆H₁₇N₃O [M]⁺: 387.1372; found 387.1366.

4-(4-Methoxyphenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4b**). By following the general procedure for 15 min, **4b** was obtained as yellow crystals (77.3 mg, 74%). Mp 244-246 °C (Lit.⁴ 224-225 °C). ¹H NMR (CDCl₃): δ = 2.12 (s, 3H), 3.91 (s, 3H), 7.06 (d, *J* = 8.9 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.41 (m, 3H), 7.52-7.62 (m, 4H), 7.95 (d, *J* = 7.5 Hz, 1H), 8.31 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ = 15.2 (CH₃), 55.3 (CH₃), 113.4 (CH), 115.8 (C), 120.0 (C), 121.4 (CH), 121.6 (CH), 123.4 (CH), 124.6 (C), 129.0 (CH), 130.5 (CH), 131.4 (CH),

134.6 (CH), 137.4 (C), 139.0 (C), 142.4 (C), 146.0 (C), 146.1 (C), 152.8 (C), 160.5 (C), 165.2 (C), 190.0 (C); MS (EI) m/z 417 (M⁺, 100%), 402 (4), 386 (15). HRMS (IE) m/z calcd. for C₂₇H₁₉N₃O₂ [M]⁺: 417.1477; found 417.1476.

3-Methyl-1-phenyl-4-(4-(trifluoromethyl)phenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (*4c*). By following the general procedure for 10 min, **4c** was obtained as white powder (104.8 mg, 92%). Mp 265-267 °C (Lit.⁴ 280-281 °C). ¹H NMR (CDCl₃): δ = 2.05 (s, 3H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.54-7.63 (m, 6H), 7.80 (d, *J* = 8.1 Hz, 2H), 7.99 (d, *J* = 7.3 Hz, 1H), 8.30 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (CDCl₃): δ = 14.9 (CH₃), 115.1 (C), 119.9, 122.7, 125.4, 128.1 (CF₃, q, J = 367.5 Hz), 120.0 (C), 121.6 (CH), 121.7 (CH), 123.6 (CH), 125.1 (CH, q, J = 3.7 Hz), 126.6 (CH), 129.1 (CH), 129.2 (CH), 130.8, 131.2, 131.5, 131.8 (C-CF₃, q, J = 33.7 Hz), 131.7 (CH), 135.0 (CH), 136.6 (C), 137.3 (C), 138.8 (C), 143.8 (C), 145.5 (C), 152.8 (C), 165.0 (C), 189.8 (C); MS (EI) m/z 455 (M⁺, 100%), 440 (6), 413 (6), 386 (5). HRMS (IE) m/z calcd. for C₂₇H₁₆F₃N₃O [M]⁺: 455.1245; found 455.1241.

4-(4-(Dimethylamino)phenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (4d). By following the general procedure for 25 min, 4d was obtained as orange crystals (90.4 mg, 84%). Mp 223-225 °C (Lit.⁴ 242-244 °C). ¹H NMR (CDCl₃): δ = 2.22 (s, 3H), 3.07 (s, 6H), 6.83 (d, *J* = 8.9 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.40 (m, 3H), 7.55 (m, 3H), 7.62 (d, *J* = 7.4 Hz, 1H), 7.95 (d, *J* = 7.4 Hz, 1H), 8.32 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): δ = 15.6 (CH₃), 40.3 (CH₃), 111.0 (CH), 115.8 (C), 119.4 (C), 119.8 (C), 121.2 (CH), 121.6 (CH), 123.3 (CH), 126.2 (CH), 129.0 (CH), 130.8 (CH), 131.2 (CH),134.4 (CH), 137.6 (C), 139.1 (C), 142.4 (C), 146.2 (C), 147.4 (C), 151.1 (C), 153.0 (C), 165.4 (C), 190.1 (C); MS (EI) m/z 430 (M⁺, 100%), 415 (5), 386 (7). HRMS (IE) m/z calcd. for C₂₈H₂₂N₄O [M]⁺: 430.1778; found 430.1794.

3-Methyl-1-phenyl-4-(p-tolyl)indeno[*1*,2*-b*]*pyrazolo*[*4*,3*-e*]*pyridin-5(1H)-one* (*4e*). By following the general procedure for 15 min, **4e** was obtained as pale-yellow crystals (78.3 mg, 78%). Mp >300 °C (Lit.⁴ 217-218 °C). ¹H NMR (CDCl₃): δ = 2.09 (s, 3H), 2.49 (s, 3H), 7.32-7.36 (m, 5H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.53-7.62 (m, 4H), 7.96 (d, *J* = 7.4 Hz, 1H), 8.31 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (CDCl₃): δ = 15.0 (CH₃), 21.6 (CH₃), 115.7 (C), 120.1 (C), 121.4 (CH), 121.6 (CH), 123.4 (CH), 126.3 (CH), 128.7 (CH), 129.0 (CH), 129.7 (C), 131.4 (CH), 134.6 (CH), 137.4 (C), 139.0 (C), 139.1 (C), 142.4 (C), 146.0 (C), 146.3 (C), 152.8 (C), 165.1 (C), 189.9 (C); MS (EI) m/z 401

(M⁺, 100%), 386 (41), 324 (8). HRMS (IE) m/z calcd. for $C_{27}H_{19}N_3O$ [M]⁺: 401.1528; found 401.1517.

4-(4-Chlorophenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4***f*). By following the general procedure for 10 min, **4f** was obtained as yellow crystals (93.9 mg, 89%). Mp 268-270 °C (Lit.⁴ 269-270 °C). ¹H NMR (CDCl₃): $\delta = 2.08$ (s, 3H), 7.35 (t, J = 7.4 Hz, 1H), 7.38-7.44 (m, 3H), 7.50-7.61 (m, 6H), 7.95 (d, J = 7.4 Hz, 1H), 8.29 (d, J = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 15.0$ (CH₃), 115.3 (C), 120.0 (C), 121.5 (CH), 121.6 (CH), 123.5 (CH), 126.5 (CH), 128.3 (CH), 129.1 (CH), 130.2 (CH), 131.1 (C), 131.6 (CH), 134.8 (CH), 135.4 (C), 137.3 (C), 139.0 (C), 142.3 (C), 144.4 (C), 145.6 (C), 152.7 (C), 165.0 (C), 189.8 (C); MS (EI) m/z 423/421 (M⁺, 37/100%), 406 (5), 386 (10). HRMS (IE) m/z calcd. for C₂₆H₁₆ClN₃O [M]⁺: 421.0982; found 421.0978.

4-(4-Bromophenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4g**). By following the general procedure for 10 min, **4g** was obtained as pale-yellow crystals (107.3 mg, 92%). Mp 264-265 °C (Lit.⁴ 274-276 °C). ¹H NMR (CDCl₃): δ = 2.10 (s, 3H), 7.33-7.38 (m, 3H), 7.50-7.64 (m, 5H), 7.67 (d, *J* = 8.9 Hz, 2H), 7.98 (d, J = 7.4 Hz, 1H), 8.29 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): δ = 15.0 (CH₃), 115.2 (C), 119.9 (C), 121.5 (CH), 121.6 (CH), 123.6 (CH), 123.7 (C), 126.5 (CH), 129.1 (CH), 130.4 (CH), 131.3 (CH), 134.8 (CH), 135.8 (C), 138.9 (C), 142.4 (C), 144.3 (C), 145.6 (C), 152.8 (C), 165.1 (C), 189.8 (C); MS (EI) m/z 467/465 (M⁺, 97/100%), 450 (5), 386 (15). HRMS (IE) m/z calcd. for C₂₆H1₆BrN₃O [M]⁺: 465.0477; found 465.0494.

3-Methyl-4-(4-nitrophenyl)-1-phenylindeno[*1,2-b*]*pyrazolo*[*4,3-e*]*pyridin-5(1H)-one* (*4h*). By following the general procedure for 10 min, **4h** was obtained as pale-yellow crystals (77.8 mg, 72%). Mp 245-246 °C (Lit.⁴ >300 °C). ¹H NMR (CDCl₃): $\delta = 2.05$ (s, 3H), 7.38 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.64 (m, 4H), 8.00 (d, J = 7.9 Hz, 1H), 8.29 (d, J = 7.6 Hz, 2H), 8.41 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 14.9$ (CH₃), 114.7 (C), 119.9 (C), 121.7 (CH), 123.3 (CH), 123.7 (CH), 126.7 (CH), 131.8 (CH), 135.1 (CH), 137.2 (C), 138.7 (C), 139.6 (C), 142.3 (C), 142.5 (C), 145.1 (C), 148.4 (C), 152.8 (C), 165.0 (C), 189.7 (C); MS (EI) m/z 432 (M⁺, 100%), 417 (3), 386 (9), 345 (5). HRMS (IE) m/z calcd. for C₂₆H₁₆N₄O₃ [M]⁺: 432.1222; found 432.1231.

3-(tert-Butyl)-1,4-diphenylindeno[*1,2-b*]*pyrazolo*[*4,3-e*]*pyridin-5(1H)-one* (*4i*). By following the general procedure for 15 min, **4i** was obtained as yellow crystals (83.8 mg, 78%). Mp 230-232 °C; ¹H NMR (CDCl₃): δ = 1.15 (s, 9H), 7.36 (m, 3H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.49-7.61 (m, 7H), 7.99 (d, *J* = 7.4 Hz, 1H), 8.37 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): δ = 30.2 (CH3), 34.2 (C), 114.8 (C), 121.0 (C), 121.3 (CH), 122.0 (CH), 123.4 (CH), 126.1 (CH), 127.9 (CH), 128.7 (CH), 128.8 (CH), 129.0 (CH), 131.4 (CH), 134.6 (CH), 136.2 (C), 137.6 (C), 139.2 (C), 142.1 (C), 146.2 (C), 153.6 (C), 157.0 (C), 163.9 (C), 190.0 (C); MS (EI) m/z 429 (M⁺, 73%), 414 (100), 399 (23), 384 (24). HRMS (IE) m/z calcd. for C₂₉H₂₃N₃O [M]⁺: 429.1841; found 429.1843.

3-(*tert-Butyl*)-1-phenyl-4-(*p*-tolyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4***j*). By following the general procedure for 15 min, **4***j* was obtained as pale-yellow crystals (85.4 mg, 77%). Mp 207-208 °C; ¹H NMR (CDCl₃): $\delta = 1.16$ (s, 9H), 2.50 (s, 3H), 7.24 (d, J = 8.6 Hz, 2H), 7.32-7.39 (m, 3H), 7.41 (t, J = 7.4 Hz, 1H), 7.54-7.61 (m, 4H), 7.98 (d, J = 7.4 Hz, 1H), 8.37 (d, J = 8.6 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 21.6$ (CH₃), 30.3 (CH₃), 34.3 (C), 115.1 (C), 121.2 (C), 121.3 (CH), 122.0 (CH), 123.4 (CH), 126.3 (CH), 128.5 (CH), 128.6 (CH), 128.9 (CH), 131.4 (CH), 133.2 (C), 134.6 (CH), 137.6 (C), 138.6 (C), 139.2 (C), 142.1 (C), 146.6 (C), 153.5 (C), 157.1 (C), 163.9 (C), 190.1 (C); MS (EI) m/z 443 (M⁺, 70%), 428 (100), 413 (25), 398 (28). HRMS (IE) m/z calcd. for C₃₀H₂₅N₃O [M]⁺: 443.1998; found 443.2004.

3-(*tert-Butyl*)-4-(4-chlorophenyl)-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4k**). By following the general procedure for 10 min, **4k** was obtained as yellow crystals (96.1 mg, 83%). Mp 235-237 °C; ¹H NMR (CDCl₃): $\delta = 1.16$ (s, 9H), 7.30 (d, J = 8.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.54-7.62 (m, 4H), 7.98 (d, J = 7.4 Hz, 1H), 8.36 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 30.4$ (CH₃), 34.2 (C), 114.6 (C), 120.9 (C), 121.4 (CH), 122.0 (CH), 123.5 (CH), 126.4 (CH), 128.3 (CH), 129.0 (CH), 130.2 (CH), 131.6 (CH), 134.6 (C), 134.8 (CH), 135.0 (C), 137.5 (C), 139.1 (C), 142.0 (C), 144.7 (C), 153.5 (C), 156.8 (C), 163.8 (C), 190.0 (C); MS (EI) m/z 465/463 (M⁺, 23/65%), 450/448 (36/100), 435/433 (6/18). HRMS (IE) m/z calcd. for C₂₉H₂₂ClN₃O [M]⁺: 463.1451; found 463.1458.

4-(4-Bromophenyl)-3-(tert-butyl)-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (4l). By following the general procedure for 10 min, 4l was obtained as yellow crystals (119.5 mg, 94%). Mp 233-235 °C; ¹H NMR (CDCl₃): $\delta = 1.16$ (s, 9H), 7.24 (d, J = 8.1 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.54-7.61 (m, 4H), 7.65 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 7.4 Hz, 1H), 8.35 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 30.4$ (CH₃), 34.2 (C), 114.5 (C), 121.4 (C), 122.0 (CH), 123.1 (C), 123.5 (CH), 126.4 (CH), 129.0 (CH), 130.5 (CH), 131.2 (CH), 131.6 (CH), 134.8 (CH), 135.1 (C), 137.4 (C), 139.1 (C), 142.0 (C), 144.6 (C), 153.5 (C), 156.8 (C), 163.8 (C), 189.9 (C); MS (EI) m/z 509/507 (M⁺, 79/69%), 494/492 (100/87), 398 (50). HRMS (IE) m/z calcd. for C₂₉H₂₂BrN₃O [M]⁺: 507.0946; found 507.0945.

3-(tert-Butyl)-1-phenyl-4-(4-(trifluoromethyl)phenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-

5(*1H*)-one (**4m**). By following the general procedure for 10 min, **4m** was obtained as pale-yellow crystals (112.0 mg, 90%). Mp 250-252 °C; ¹H NMR (CDCl₃): $\delta = 1.13$ (s, 9H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.56-7.62 (m, 4H), 7.79 (d, *J* = 7.9 Hz, 2H), 7.99 (d, *J* = 7.4 Hz, 1H), 8.36 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 30.3$ (CH₃), 34.2 (C), 114.3 (C), 120.7 (C), 121.5 (CH), 122.1 (CH), 123.5 (CH), 125.0 (CH, q, *J* = 3.7 Hz), 126.5 (CH), 129.0 (CH), 129.4 (CH), 130.6, 131.0, 131.3, 131.6 (C-CF3, q, *J* = 33.0 Hz), 131.7 (CH), 134.9 (CH), 137.4 (C), 139.1 (C), 140.1 (C), 142.0 (C), 144.2 (C), 153.5 (C), 156.7 (C), 163.8 (C), 189.89 (C); MS (EI) m/z 497 (M⁺, 58%), 482 (100), 455 (18). HRMS (IE) m/z calcd. for C₃₀H₂₂F₃N₃O [M]⁺: 497.1715; found 497.1718.

3-(tert-Butyl)-4-(4-methoxyphenyl)-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one

(*4n*). By following the general procedure for 10 min, **4n** was obtained as orange crystals (89.5 mg, 78%). Mp 228-230 °C; ¹H NMR (CDCl₃): $\delta = 1.17$ (s, 9H), 3.92 (s, 3H), 7.05 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.54-7.61 (m, 4H), 7.98 (d, J = 7.3 Hz, 1H), 8.37 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 30.3$ (CH₃), 34.3 (C), 55.3 (CH₃), 113.4 (CH), 115.3 (C), 121.3 (CH), 121.4 (C), 122.0 (CH), 123.4 (CH), 126.3 (CH), 128.3 (C), 129.0 (CH), 130.0 (CH), 131.4 (CH), 134.6 (CH), 137.6 (C), 139.2 (C), 142.1 (C), 146.4 (C), 153.6 (C), 157.1 (C), 160.0 (C), 163.9 (C), 190.2 (C); MS (EI) m/z 459 (M⁺, 79%), 444 (100), 429 (36), 414 (21). HRMS (IE) m/z calcd. for C₃₀H₂₅N₃O₂ [M]⁺: 459.1947; found 459.1931.

3-(*tert-Butyl*)-4-(4-*nitrophenyl*)-1-*phenylindeno*[1,2-*b*]*pyrazolo*[4,3-*e*]*pyridin-5*(1*H*)-*one* (4*o*). By following the general procedure for 10 min, 4**o** was obtained as pale-orange crystals (89.0 mg, 75%). Mp 270-272 °C; ¹H NMR (CDCl₃): $\delta = 1.14$ (s, 9H), 7.39 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.56-764 (m, 6H), 8.00 (d, J = 7.4 Hz, 1H), 8.35 (d, J = 8.6 Hz, 2H), 8.40 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃): δ = 30.4 (CH₃), 34.2 (C), 113.8 (C), 120.5 (C), 121.6 (CH), 122.1 (CH), 123.3 (CH), 123.6 (CH), 126.7 (CH), 129.0 (CH), 130.2 (CH), 131.8 (CH), 135.0 (CH), 137.3 (C), 139.0 (C), 142.0 (C), 143.0 (C), 143.2 (C), 148.2 (C), 156.5 (C), 163.8 (C), 189.8 (C); MS (EI) m/z 474 (M⁺, 53%), 459 (100), 432 (15), 398 11). HRMS (IE) m/z calcd. for C₂₉H₂₂N₄O₃ [M]⁺: 474.1692; found 474.1696.

3-(*tert-Butyl*)-1-(4-chlorophenyl)-4-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4p**). By following the general procedure for 15 min, **4p** was obtained as yellow crystals (99.7 mg, 86%). Mp 233-235 °C (Lit.⁵ 237-238 °C); ¹H NMR (CDCl₃): $\delta = 1.14$ (s, 9H), 7.35 (d, J = 8.7 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.49-762 (m, 7H), 7.96 (d, J = 7.5 Hz, 1H) and 8.35 (d, J = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 30.2$ (CH₃), 34.3 (C), 115.0 (C), 121.1 (C), 121.3 (CH), 122.9 (CH), 123.5 (CH), 127.9 (CH), 128.7 (CH), 128.9 (CH), 129.0 (CH), 131.5 (C), 131.6 (CH), 134.7 (CH), 136.0 (C), 137.5 (C), 137.8 (C), 141.9 (C), 146.3 (C), 153.5 (C), 157.3 (C), 164.0 (C), 189.8 (C); MS (EI) m/z 465/463 (M⁺, 21/71%), 450/448 (37/100), 435/433 (6/14), 420/418 (19/21). HRMS (IE) m/z calcd. for C₂₉H₂₂ClN₃O [M]⁺: 463.1451; found 463.1469. The characterization data for **4p** match previously reported data by us.⁵

3-(tert-Butyl)-1-(4-chlorophenyl)-4-(p-tolyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one

(*4q*). By following the general procedure for 15 min, **4q** was obtained as yellow crystals (88.0 mg, 78%). Mp 213-215 °C; ¹H NMR (CDCl₃): $\delta = 1.15$ (s, 9H), 2.50 (s, 3H), 7.23 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.42 (t, J = 7.4 Hz, 1H), 7.52 (d, J = 9.0 Hz, 2H), 7.56-761 (m, 2H), 7.96 (d, J = 7.5 Hz, 1H), 8.38 (d, J = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 21.6$ (CH₃), 30.2 (CH₃), 34.3 (C), 115.2 (C), 121.2 (CH), 121.3 (C), 122.9 (CH), 123.5 (CH), 128.5 (CH), 128.6 (CH), 129.0 (CH), 129.7 (C), 131.5 (CH), 133.0 (C), 134.6 (CH), 137.6 (C), 137.8 (C), 138.7 (C), 141.9 (C), 146.7 (C), 153.5 (C), 157.4 (C), 164.0 (C), 189.9 (C); MS (EI) m/z 479/477 (M⁺, 27/76%), 464/462 (38/100), 449/447 (9/27), 434/432 (27/32). HRMS (IE) m/z calcd. for C₃₀H₂₄ClN₃O [M]⁺: 447.1608; found 447.1605.

3-(*tert-Butyl*)-1,4-*bis*(4-*chlorophenyl*)*indeno*[1,2-*b*]*pyrazolo*[4,3-*e*]*pyridin*-5(1*H*)-*one* (**4***r*). By following the general procedure for 15 min, **4***r* was obtained as yellow crystals (99.7 mg, 80%). Mp 260-262 °C; ¹H NMR (CDCl₃): δ = 1.15 (s, 9H), 7.29 (d, *J* = 8.7 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.49-762 (m, 6H), 7.97 (d, *J* = 7.4 Hz, 1H), 8.36 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃): δ = 30.3 (CH₃), 34.3 (C), 114.8 (C), 121.1 (C), 121.4 (CH), 122.9 (CH), 123.6 (CH), 128.3 (CH),

129.0 (CH), 130.2 (CH), 131.6 (CH), 131.7 (C), 134.5 (C), 134.8 (CH), 135.1 (C), 137.4 (C), 137.7 (C), 141.8 (C), 144.8 (C), 153.5 (C), 157.1 (C), 163.9 (C), 189.8 (C); MS (EI) m/z 501/500/499/497 (M⁺, 7/10/52/68%), 484/483/482/467/457 (75/11/100/13/23). HRMS (IE) m/z calcd. for C₂₉H₂₁Cl₂N₃O [M]⁺: 497.1062; found 497.1056.

4-(4-Bromophenyl)-3-(tert-butyl)-1-(4-chlorophenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-

5(1H)-one (4s). By following the general procedure for 15 min, **4s** was obtained as pale-yellow crystals (124.8 mg, 92%). Mp 252-254 °C; ¹H NMR (CDCl₃): $\delta = 1.15$ (s, 9H), 7.23 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.52 (d, J = 9.0 Hz, 2H), 7.57-763 (m, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.97 (d, J = 7.5 Hz, 1H), 8.36 (d, J = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 30.3$ (CH₃), 34.3 (C), 114.7 (C), 121.0 (C), 121.4 (CH), 123.0 (CH), 123.2 (C), 123.6 (CH), 129.1 (CH), 130.5 (CH), 131.2 (CH), 131.7 (CH), 131.8 (C), 134.9 (CH), 135.0 (C), 135.1 (C), 137.4 (C), 137.7 (C), 141.8 (C), 144.7 (C), 153.5 (C), 157.1 (C), 163.9 (C), 189.8 (C); MS (EI) m/z 545/544/543/541 (M⁺, 21/20/100/68%), 530/529/528/526/513 (14/17/98/70/15). HRMS (IE) m/z calcd. for C₂₉H₂₁BrClN₃O [M]⁺: 541.0557; found 541.0541.

3-(tert-Butyl)-1-(4-chlorophenyl)-4-(4-(trifluoromethyl)phenyl)indeno[1,2-b]pirazolo[4,3-

e]pyridin-5(1H)-one (4t). By following the general procedure for 15 min, **4t** was obtained as yellow crystals (126.4 mg, 95%). Mp 226-227 °C; ¹H NMR (CDCl₃): $\delta = 1.12$ (s, 9H), 7.44 (t, J = 7.4 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.9 Hz, 2H), 7.57 (d, J = 7.4 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.98 (d, J = 7.4 Hz, 1H), 8.36 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 30.2$ (CH₃), 34.2 (C), 114.4 (C), 120.0, 122.7, 125.4, 128.1 (CF₃, q, J = 272.2 Hz), 120.9 (C), 121.5 (CH), 123.0 (CH), 123.6 (CH), 125.0 (CH, q, J = 3.7 Hz), 129.1 (CH), 129.4 (CH), 130.7, 131.0, 131.4, 131.7 (C-CF₃, q, J = 32.3 Hz), 131.7 (CH), 131.8 (C), 135.0 (CH), 137.4 (C), 137.7 (C), 139.9 (C), 141.8 (C), 144.2 (C), 153.5 (C), 157.0 (C), 163.9 (C), 189.7 (C); MS (EI) m/z 533/531 (M⁺, 27/68%), 518/516 (35/100), 489/487 (6/16). HRMS (IE) m/z calcd. for C₃₀H₂₁ClF₃N₃O [M]⁺: 531.1325; found 531.1304.

3-(tert-Butyl)-1-(4-chlorophenyl)-4-(4-methoxyphenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-

5(1*H*)-one (**4***u*). By following the general procedure for 20 min, **4u** was obtained as pale-orange crystals (105.0 mg, 79%). Mp 225-227 °C (Lit.⁵ 230-231 °C); ¹H NMR (CDCl₃): δ = 1.16 (s, 9H), 3.92 (s, 3H), 7.05 (d, *J* = 8.7 Hz, 2H), 7.26 (d, *J* = 8.7 Hz, 2H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.51 (d, *J*

= 8.9 Hz, 2H), 7.56-761 (m, 2H), 7.96 (d, J = 7.4 Hz, 1H), 8.37 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃): δ = 30.2 (CH₃), 34.4 (C), 55.3 (CH₃), 113.4 (CH), 115.5 (C), 121.3 (CH), 121.5 (C), 122.9 (CH), 123.5 (CH), 128.1 (CH), 129.0 (CH), 130.0 (CH), 131.4 (C), 131.5 (CH), 134.7 (CH), 137.6 (C), 137.8 (C), 138.7 (C), 141.9 (C), 146.5 (C), 153.5 (C), 157.4 (C), 164.0 (C), 190.0 (C); MS (EI) m/z 495/493 (M⁺, 28/77%), 480/478 (36/100), 465/463 (11/37). HRMS (IE) m/z calcd. for C₃₀H₂₄ClN₃O₂ [M]⁺: 493.1557; found 493.1544. The characterization data for **4p** match previously reported data by us.⁵

3-(*tert-Butyl*)-1-(4-chlorophenyl)-4-(4-nitrophenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)one (4v). By following the general procedure for 15 min, 4v was obtained as yellow crystals (99.2 mg, 78%). Mp 288-290 °C; ¹H NMR (CDCl₃): $\delta = 1.14$ (s, 9H), 7.45 (t, J = 7.4 Hz, 1H), 7.51-758 (m, 5H), 7.63 (t, J = 7.4 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 8.36 (d, J = 9.1 Hz, 1H), 8.40 (d, J = 8.7 Hz, 1H); ¹³C NMR (CDCl₃): $\delta = 30.4$ (CH₃), 34.2 (C), 114.0 (C), 120.6 (C), 121.6 (CH), 123.0 (CH), 123.3 (CH), 123.7 (CH), 129.1 (CH), 130.2 (CH), 131.9 (CH), 132.0 (C), 135.1 (CH), 137.3 (C), 137.6 (C), 141.8 (C), 143.0 (C), 148.3 (C), 153.5 (C), 156.8 (C), 163.9 (C), 189.6 (C); MS (EI) m/z 510/508 (M⁺, 23/67%), 495/493 (36/100), 468/466 (5/14). HRMS (IE) m/z calcd. for C₂₉H₂₁ClN₄O₃ [M]⁺: 508.1302; found 508.1300.

1-(4-Chlorophenyl)-3-methyl-4-phenylindeno[*1,2-b*]*pyrazolo*[*4,3-e*]*pyridin-5(1H)-one* (*4w*). By following the general procedure for 15 min, **4w** was obtained as yellow crystals (84.4 mg, 80%). Mp 240-242 °C; ¹H NMR (CDCl₃): δ = 2.04 (s, 3H), 7.40-7.46 (m, 3H), 7.48-7.55 (m, 5H), 7.58-7.63 (m, 2H), 7.96 (d, *J* = 7.5 Hz, 1H), 8.32 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): δ = 14.8 (CH₃), 115.7 (C), 120.2 (C), 121.4 (CH), 122.4 (CH), 123.5 (CH), 128.0 (CH), 128.6 (CH), 129.1 (CH), 129.2 (CH), 131.6 (CH), 132.6 (C), 134.8 (CH), 137.3 (C), 137.6 (C), 142.3 (C), 145.9 (C), 146.2 (C), 152.8 (C), 165.2 (C), 189.8 (C); MS (EI) m/z 423/421 (M⁺, 36/100%). HRMS (IE) m/z calcd. for C₂₆H₁₆ClN₃O [M]⁺: 421.0982; found 421.0988.

3-(*tert-Butyl*)-1-(4-*nitrophenyl*)-4-*phenylindeno*[1,2-*b*]*pyrazolo*[4,3-*e*]*pyridin*-5(1*H*)-*one* (4**x**). By following the general procedure for 15 min, 4**x** was obtained as yellow crystals (89.0 mg, 75%). Mp 245-247 °C; ¹H NMR (DMSO-*d*₆, 120 °C): $\delta = 1.11$ (s, 9H), 7.39 (d, J = 7.9 Hz, 2H), 7.47-756 (m, 6H), 8.05 (d, J = 7.4 Hz, 1H), 8.42 (d, J = 9.2 Hz, 2H), 8.71 (d, J = 9.1 Hz, 2H); ¹³C NMR (DMSO-*d*₆, 120 °C): $\delta = 29.2$ (CH₃), 33.4 (C), 114.7 (C), 120.0 (C), 120.5 (CH), 120.7 (CH), 122.1 (CH), 124.0 (CH), 126.9 (CH), 128.1 (CH), 128.2 (CH), 131.4 (CH), 134.4 (CH), 134.8 (C),

135.0 (C), 136.4 (C), 140.4 (C), 143.0 (C), 144.4 (C), 145.6 (C), 157.6 (C), 163.2 (C), 187.5 (C);MS (EI) m/z 474 (M⁺, 30%), 459 (100), 444 (33), 429 (17). HRMS (IE) m/z calcd. for $C_{29}H_{22}N_4O_3 [M]^+$: 474.1692; found 474.1692.

2-(4-(*Dimethylamino*)*benzylidene*)-*1H-indene-1,3*(*2H*)-*dione* **6h**. By following the general procedure for 10 min, **6h** was obtained as bright-orange crystals (65.8 mg, 95%). Mp 192-193 °C (Lit. [37] 203 °C). ¹H NMR (CDCl₃): $\delta = 3.13$ (s, 6H), 6.73 (d, J = 9.2 Hz, 2H), 7.71 (m, 2H), 7.77 (s, 1H), 7.91 (m, 2H), 8.52 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃): $\delta = 40.0$ (CH₃), 111.4 (CH), 122.0 (C), 122.4 (CH), 123.0 (C), 134.0 (CH), 134.3 (CH), 137.9 (CH), 139.9 (C), 142.2 (C), 147.5 (CH), 153.9 (C), 189.9 (C), 191.7 (C); MS (EI) m/z 277 (M⁺, 100%), 260 (7), 233 (10). HRMS (IE) m/z calcd. for C₁₈H₁₅NO₂ [M]⁺: 277.1103; found 277.1096.

2.2.2. General procedure for the synthesis of 2-(4-aryl-3-methyl-1-phenylindeno[1,2b]pyrazolo[4,3-e]pyridin-5(1H)-ylidene)malononitrile **7a-d**. A mixture of the appropiate ketone **4a-d** (0.22 mmol) and malononitrile (27 mg, 2.2 mmol) in 20 mL of chlorobenzene was added pyridine (0.36 mL, 4.4 mmol) and TiCl₄ (0.24 mL, 2.2 mmol) under argon atmosphere. The mixture was stirred at room temperature for 15 min and it was heated at reflux for 20 h. Then, equal amounts of pyridine and TiCl₄ was added and the final mixture was heated at reflux for 4 h. The resulting crude was added 20 mL of water and partitioned with DCM. The organic layer was washed with water and dried over anhydrous Na₂SO₄. Later, the solvent was removed under vacuum and the residue was purified by flash chromatography (eluent: CH₂Cl₂:MeOH 50:1 v/v) to give the pure products **7a-d** as orange solids.

2-(3-Methyl-1,4-diphenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-ylidene)malononitrile (7a). By following the general procedure, 7a was obtained as orange powder (96.0 mg, 96%). Mp. 235-237 °C. ¹H NMR (CDCl₃): δ = 2.10 (s, 3H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.48-7.65 (m, 9H), 8.05 (d, *J* = 7.0 Hz, 1H), 8.26 (d, *J* = 8.5 Hz, 2H), 8.49 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (CDCl₃): δ = 16.1 (CH₃), 111.7 (C), 114.8 (C), 115.7 (C), 121.7 (CH), 121.8 (C), 122.4 (CH), 125.9 (CH), 126.7 (CH), 128.7 (C), 129.2 (CH), 129.6 (CH), 129.9 (CH), 130.6 (CH), 131.5 (CH), 134.1 (CH), 134.2 (C), 138.6 (C), 138.7 (C), 139.9 (C), 146.0 (C), 147.7 (C), 152.3 (C), 160.0 (C), 162.1 (C). HRMS (ESI+) m/z calcd. for C₂₉H₁₈N₅ [M+H]⁺: 436.1562; found 436.1548.

2-(4-(4-Methoxyphenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-

ylidene)malononitrile (7b). By following the general procedure, 7b was obtained as orange powder (100.0 mg, 98%). Mp. 244-246 °C. Recrystallization of 7b from DMF afforded crystals of suitable size and quality for single-crystal X-ray diffraction analysis. ¹H NMR (CDCl₃): $\delta = 2.19$ (s, 3H), 3.93 (s, 3H), 7.14 (d, J = 8.7 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.43 (d, J = 8.7 Hz, 2H), 7.49 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.8 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 8.04 (d, J = 7.0 Hz, 1H), 8.26 (d, J = 7.4 Hz, 2H), 8.48 (d, J = 7.9 Hz, 1H); ¹³C NMR (CDCl₃): $\delta = 16.4$ (CH₃), 55.5 (CH₃), 111.9 (C), 114.9 (C), 115.2 (CH), 115.9 (C), 121.7 (CH), 122.0 (C), 122.4 (CH), 125.8 (CH), 126.3 (C), 126.6 (CH), 128.3 (C), 129.2 (CH), 131.3 (CH), 131.4 (CH), 134.0 (CH), 138.9 (C), 139.9 (C), 146.0 (C), 160.4 (C), 161.5 (C), 161.9 (C). HRMS (ESI+) m/z calcd. for C₃₀H₂₀N₅O [M+H]⁺: 466.1668; found 466.1647. Crystal data for **7b** were deposited at CCDC (1886021): Chemical formula C₃₀H₁₉N₅O, Mr 187.20, Monoclinic, C2/c, 100 K, cell dimensions a, b, c (Å) 14.878(7), 12.149(6), 27.262(12) A α , β , γ (°) 90, 96.052(12), 90. V (Å³) 4900 (4), Z = 8, F(000) = 1936, Dx (Mg m-3) = 1.262, Mo Ka, μ (mm-1)= 0.080, Crystal size (mm) = 0.307 x 0.200 x 0.180. Data collection: Diffractometer Bruker D8 Venture (APEX 3), Monochromator multilayer mirror, CCD rotation images, thick slices $\varphi \& \theta$ scans, Mo INCOATEC high brilliance microfocus sealed tube $(\lambda = 0.71073 \text{ Å})$, multiscan absorption correction (SADABS-2016/2), Tmin, Tmax 0.6907 0.7456. No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 70658, 5639, 4245, Rint= 0.091 (0.041), θ values (°): θ max = 27.5, θ min = 2.25; Range h = -19 \rightarrow 19, k = -15 \rightarrow 15, 1 = -35 \rightarrow 35, 0 Refinement on $F^2:R[F^2 > 2\sigma(F^2)] = 0.0637$, wR(F²) = 0.0915, S=1.149. No. of reflections 4245. No. of parameters 327, No. of restraints 0. Weighting scheme: $w = 1/\sigma^2(Fo^2) + (0.0346P)^2 + 13.4077P$ where $P = (Fo^2 + 2Fc^2)/3$. $(\Delta/\sigma) < 0.001$, $\Delta\rho$ max, $\Delta\rho$ min (e Å⁻³) 0.310, -0.350.

2-(3-Methyl-1-phenyl-4-(4-(trifluoromethyl)phenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)ylidene)malononitrile (7c). By following the general procedure, 7c was obtained as orange powder (111.0 mg, 95%). Mp. 272-273 °C. ¹H NMR (CDCl₃): δ = 2.07 (s, 3H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.49-7.58 (m, 3H), 7.61-7.66 (m, 3H), 7.88 (d, *J* = 8.0 Hz, 2H), 8.06 (d, *J* = 7.1 Hz, 1H), 8.25 (d, *J* = 8.7 Hz, 2H), 8.49 (d, *J* = 7.9Hz, 1H); ¹³C NMR (CDCl₃): δ = 16.2 (CH₃), 111.9 (C), 114.4 (C), 115.2 (C), 121.7 (CH), 122.4 (C), 122.5 (CH), 125.2 (C), 126.0 (CH), 126.6 (CHo-CF₃, q, *J* = 3.7 Hz), 126.9 (CH), 129.2 (CH), 130.4 (CH), 131.7 (CH), 132.6 (Ci-CF₃ q, *J* = 67 Hz), 134.3 (CH), 137.9 (C), 138.5 (C), 138.6 (C), 139.7 (C), 145.5 (C), 145.6 (C), 152.2 (C), 159.8 (C), 162.2 (C). HRMS (ESI+) m/z calcd. for C₃₀H₂₇F₃N₅ [M+H]⁺: 504.1436; found 504.1419.

2-(4-(4-(*Dimethylamino*)*phenyl*)-3-*methyl*-1-*phenylindeno*[1,2-*b*]*pyrazolo*[4,3-*e*]*pyridin*-5(1*H*)*ylidene*)*malononitrile* (7*d*). By following the general procedure, 7*d* was obtained as green powder (53.2 mg, 50%). Mp. >300 °C. ¹H NMR (CDCl₃): $\delta = 2.29$ (s, 3H), 3.10 (s, 6H), 6.88 (d, J = 8.7Hz, 2H), 7.33-7.37 (m, 3H), 7.48 (t, J = 7.6 Hz, 1H), 7.53-7.61 (m, 3H), 8.01 (d, J = 7.1 Hz, 1H), 8.26 (d, J = 8.4 Hz, 2H), 8.44 (d, J = 7.9 Hz, 1H); ¹³C NMR (CDCl₃): $\delta = 16.8$ (CH₃), 40.2 (CH₃), 112.0 (C), 112.6 (CH), 115.1 (C), 115.9 (C), 121.0 (C), 121.7 (CH), 122.0 (CH), 122.2 (CH), 125.6 (CH), 126.5 (CH), 129.1 (CH), 131.1 (CH), 131.2 (CH), 133.7 (CH), 138.8 (C), 139.9 (C), 146.2 (C), 149.1 (C), 151.7 (C), 152.6 (C), 161.1 (C), 161.8 (C). HRMS (ESI+) m/z calcd. for C₃₁H₂₃N₆ [M+H]⁺: 479.1984; found 479.1969.

2.3. *Photophysical properties*. The solvochromic studies of compounds **7a-d** were carried out with 50 μ M solutions in toluene (PhMe), dichloromethane (DCM), acetonitrile (ACN), acetone, and dimethyl sulfoxide (DMSO). Fluorescence response in photographs was at an excitation of 365 nm using a UV lamp. The relative quantum yields were obtained using quinine sulfate ($\phi_F = 0.59$ in 0.15 M HClO₄) [38] as reference and calculated according to the following equation⁶⁻⁸

$$\varphi_{f,x} = \varphi_{f,st} \cdot \frac{F_x}{F_{st}} \cdot \frac{1 - 10^{-A_{st}}}{1 - 10^{-A_x}} \cdot \frac{\eta_x^2}{\eta_{st}^2}$$

where x and st indicate the sample and standard solution, respectively, ϕ is the quantum yield, F is the integrated area of the emission, A is the absorbance at the excitation wavelength, and η is the index of refraction of the solvents.

2.4. Computation details. Theoretical calculations were obtained using DFT performed using Gaussian 09.⁹ The DFT calculations employed the B3LYP hybrid functional and the 6-311G+(d,p) basis set. All geometries were optimized in the ground state without solvent effects. Time-dependent (TD-DFT) calculations were performed on optimized geometries. The visual software used in this work was Avogadro 1.2.0 to analyze the output files performed in the calculations.¹⁰

3. Supplementary Analytical Data (Identification of intermediate 5a)

Fig. S 1. Identification by ¹H NMR (CDCl₃) of the intermediates 5a'-5a'' versus ¹H NMR of 4a

4. Photophysical studies

Fig. S3. UV-vis spectra of **7a-d** (10 μ M). (a) DMF, (b) ACN, (c) acetone, (d) DCM, and (e) toluene. Photograph of compounds **7a-d** in DMSO under natural.

Fig. S4. Fluorescence spectra of **7a-d** (10 μ M). (a) DMF, (b) ACN, (c) acetone, (d) DCM, and (e) toluene. Photograph under a hand-held UV lamp at long wavelength $\lambda = 365$ nm.

Compound	Salvanta	λ_{ab}	a (I. mal-1 am-1)	λ _{ex}	λ_{em}	Stalzas shift (nm)	+_b
Compound	Solvent	(nm)	E (L moi - cm -)	(nm)	(nm)	Stokes shift (IIII)	φŀ
	DMSO	309	16970		519	210	0.030
	ACN	306	23633		490	184	0.011
7a	Acetona	334	14523	340	491	157	0.028
	DCM	307	25934		482	175	0.010
	Tolueno	310	22642		382	72	0.009
	DMSO	304	25793		475	171	0.133
	ACN	305	27142		482	177	0.013
7b	Acetona	336	16433	345	485	149	0.082
	DCM	305	40837		476	171	0.027
	Tolueno	305	25049		417	112	0.010
	DMSO	308	21140		453	145	0.114
	ACN	305	23535		486	181	0.015
7c	Acetona	335	17885	350	485	150	0.012
	DCM	307	49177		475	168	0.050
	Tolueno	308	23044		465	157	0.011
	DMSO	297	22544	350	406	109	0.002
	ACN	260	20342	345	550	290	0.181
7d	Acetona	339	22311		507	168	0.003
	DCM	294	42680	350	462	168	0.026
	Tolueno	291	23195		430	139	0.006
$a50 \mu\text{M}$. b Relati	ive quantum yi	elds were t	aken by using quinine	sulfate as	a referenc	$e(\phi_{\rm F} = 0.59 \text{ in } 0.15 \text{ M})$	HClO ₄).

Table S1. Photophysical properties of compounds 7a-d

5. Computational calculations

Fig. S5. Frontier Orbitals of compounds 7a-d

	Wavele	ength (nm)	Excitation	Oscillator			
Compound	Theoretical ^a	Experimental ^b	energy (eV)	strength (f)	Transitions		
	477	434	2.6922	0.6964	HOMO-1 → LUMO+1 (100%)		
	368		3,648	0.0628	HOMO-4 \rightarrow LUMO (22%) HOMO \rightarrow LUMO+1 (30%)		
7a	344	344	3.6019	0.2363	HOMO-5 → LUMO (33%) HOMO-2 → LUMO (17%)		
	295	310	4.1959	0.5933	HOMO-1 \rightarrow LUMO+1 (43%) HOMO-6 \rightarrow LUMO (31%)		
	291	285	4.2543	0.2476	HOMO-8 \rightarrow LUMO (30%) HOMO-4 \rightarrow LUMO+1 (24%) HOMO-2 \rightarrow LUMO+1 (24%)		
	498		2.4875	0.0902	HOMO-1 \rightarrow LUMO (35%) HOMO \rightarrow LUMO (65%)		
	464 457		2.6707	0.0886	HOMO-2 \rightarrow LUMO (36%) HOMO-1 \rightarrow LUMO (44%) HOMO \rightarrow LUMO (20%)		
		445	2.7156	0.0507	HOMO-2 → LUMO (49%) HOMO-1→ LUMO (31%) HOMO-→ LUMO (20%)		
7b	362		3.4225	0.0835	HOMO-5 → LUMO (39%) HOMO-3→ LUMO (43%) HOMO-→ LUMO+1 (18%)		
	339	347	3.6538 0.2224		HOMO-5 → LUMO (18%) HOMO-3→ LUMO (16%) HOMO-1→ LUMO+1 (38%)		
		305	4.1259	0.1098	HOMO-8 → LUMO (43%) HOMO-3→ LUMO+1 (46%)		
	294	300	4.2079	0.6188	HOMO-6 → LUMO (34%) HOMO-2→ LUMO+1 (52%)		
	480	436	2.5802	0.1984	HOMO \rightarrow LUMO (100%)		
	351	355	3.5284	0.1925	HOMO-4 \rightarrow LUMO (44%) HOMO-2 \rightarrow LUMO (25%)		
7c	312	307	3.9615	0.1059	HOMO-8 → LUMO (14%) HOMO-7→ LUMO (22%) HOMO-6 → LUMO (17%) HOMO-1→ LUMO+1 (23%)		
	298	285	4.1572	0.4470	HOMO-6 → LUMO (28%) HOMO-1→ LUMO+1 (32%)		
	644		1.9259	0.0333	HOMO \rightarrow LUMO (100%)		
	471	550	2.6337	0.1850	HOMO-2 \rightarrow LUMO (24%) HOMO-1 \rightarrow LUMO (76%)		
	416	400	2.9792	0.1479	HOMO \rightarrow LUMO+1 (100%)		
7d	343	343	3.6133	0.2563	HOMO-5 → LUMO (31%) HOMO-3→ LUMO (28%)		
	297	290	4.1821	0.5251	HOMO-9 → LUMO (16%) HOMO-6→ LUMO (28%) HOMO-2 → LUMO+1 (56%)		

Table S2. Theoretical data of 7a-d.TD-DFT calculations at B3LYP/6-31G(*d*,*p*) theory level

^a Data calculated on gas phase. ^b Experimental data in toluene

Fig. S6. Frontier molecular orbitals of compound 7a

Fig. S8. Frontier molecular orbitals of compound 7c

-0,23934

-0,25733

-0,09618

3.1 Coordinates of the optimized structure for **7a** calculated at the B3LYP/6-31+G(d, p) level theory

	Atom	Х	Y	Z	Atom	Х	Y	Z
	Ν	1.45067	1.05228	-0.06115	С	-1.83445	-3.10994	-0.64568
	Ν	2.93430	-0.85397	-0.10439	Н	-1.25158	-3.14857	-1.56033
	Ν	2.81572	-2.21531	0.02142	С	0.28379	3.88625	0.38859
	С	0.73524	-1.31264	-0.03590	Н	1.36762	3.92419	0.35233
\wedge	С	1.69947	-0.26744	-0.11266	С	1.13823	-3.94931	0.24177
	С	-0.92496	0.39808	-0.07878	Н	0.70276	-4.36325	-0.67265
	С	0.16340	1.33793	-0.01690	Н	0.40005	-4.07391	1.03851
	С	-0.64523	-0.97957	-0.00566	Н	2.03183	-4.52724	0.48791
	С	-0.38103	2.68195	0.19209	С	-3.69689	-0.37531	-1.30600
\mathbf{N}'	С	4.22996	-0.26664	-0.14104	С	-0.48059	5.03090	0.64312
	С	1.52897	-2.51266	0.07449	Н	0.01230	5.98450	0.80679
	С	-2.46838	-1.96681	1.38915	С	-3.55541	-4.04107	0.77777
	Н	-2.34449	-1.13953	2.08207	С	5.71659	1.53469	-0.75255
7 a	С	-1.67088	-2.03054	0.23438	Н	5.86840	2.50928	-1.20706
	С	-3.41449	0.82459	-0.58075	С	-1.87670	4.95288	0.69750
	С	-1.79060	2.59313	0.22454	С	-2.54655	3.74129	0.48285
	С	-2.17148	1.19402	-0.11203	Н	-3.62665	3.71669	0.53297
SCF Energy: -1389.11581695 a. u.	С	-3.40051	-2.96977	1.66134	С	6.79950	0.83572	-0.21409
Num. Imaginary Frequencies: 0	Н	-4.00432	-2.91244	2.56215	Н	7.79666	1.26431	-0.24273
HOMO energy: -0.23473 eV	С	5.31001	-0.97708	0.40023	С	6.58855	-0.42226	0.35767
LUMO energy: -0.12464 eV	Н	5.13823	-1.95245	0.83787	Н	7.42197	-0.97726	0.77809
	С	4.43129	0.99071	-0.72558	Ν	-5.50273	2.36420	-0.47466
	Н	3.59583	1.53485	-1.14522	Ν	-4.00121	-1.26535	-1.99246
	С	-4.54912	1.69716	-0.52359	Н	-2.45743	5.84527	0.90946
	С	-2.77383	-4.10471	-0.37847	Η	-4.28696	-4.81645	0.98454
	Η	-2.90490	-4.92216	-1.08085				

3.2. Coordinates of the optimized structure for **7b** calculated at the B3LYP/6-31+G(d, p) level theory

					_			
	Atom	X	Y	Z	Aton	ı X	Y	Z
	0	-5.56390	-2.83286	0.93302	Н	-1.80263	-2.31211	-1.62545
	Ν	2.14749	0.73038	-0.03815	С	2.00578	3.78487	0.47080
	Ν	2.89209	-1.56622	-0.11815	Н	3.03832	3.45157	0.45527
	Ν	2.31501	-2.80779	-0.02855	С	0.14417	-3.86980	0.13214
$\mathbf{\tilde{o}}$	С	0.66709	-1.24873	-0.08563	Н	-0.37496	-4.10445	-0.80222
Ī	С	1.93086	-0.59364	-0.12463	Н	-0.61812	-3.74332	0.90533
	С	-0.30730	0.92656	-0.09768	Н	0.78102	-4.71862	0.39127
	С	1.03415	1.43721	0.00106	С	-3.14347	1.16161	-1.39847
	С	-0.51895	-0.46546	-0.05627	С	1.67085	5.11730	0.73903
$ \downarrow //$	С	0.97573	2.88294	0.23336	Н	2.45484	5.84260	0.93510
	С	4.31058	-1.45516	-0.12639	С	-4.34638	-2.31007	0.62152
	С	1.00307	-2.64890	0.00347	С	6.33313	-0.25502	-0.67293
	С	-2.61700	-0.75081	1.27820	Н	6.81597	0.62026	-1.09745
	Н	-2.23947	-0.01518	1.98252	С	0.33089	5.51959	0.76557
<hr/> // 7b	С	-1.84638	-1.09571	0.15038	С	-0.70603	4.61290	0.50889
	С	-2.48602	2.18466	-0.64517	Н	-1.73091	4.95734	0.53787
	С	-0.38007	3.28026	0.23719	С	7.10334	-1.29471	-0.14666
	С	-1.20609	2.09976	-0.13822	Н	8.18722	-1.23167	-0.15461
SCF Energy: -1503.64623840 a. u.	С	-3.84405	-1.35345	1.51877	С	6.46591	-2.41868	0.38653
Num. Imaginary Frequencies: 0	Н	-4.43405	-1.09661	2.39233	Н	7.05250	-3.23494	0.79769
HOMO energy: -0.22997 eV	С	5.07426	-2.50461	0.40264	С	-6.15981	-3.76465	0.03417
LUMO energy: -0.12229 eV	Н	4.57246	-3.37310	0.81043	Н	-6.31386	-3.31782	-0.95508
	С	4.93909	-0.32800	-0.67204	Н	-7.12477	-4.02088	0.47225
	Н	4.34683	0.47910	-1.08189	Н	-5.55064	-4.67193	-0.06075
	С	-3.25228	3.39404	-0.60163	Ν	-3.91899	4.34858	-0.56659
	С	-3.59594	-2.66011	-0.50877	Ν	-3.72040	0.43991	-2.10736
	Н	-3.96967	-3.37569	-1.23072	Н	0.08377	6.55287	0.98880
	С	-2.35729	-2.05728	-0.72814				

3.3. Coordinates of the optimized structure for **7c** calculated at the B3LYP/6-31+G(d, p) level theory

	Atom	Х	Y	Z	Atom	Х	Y	Z
	Ν	2.63874	0.49576	-0.01517	Н	3.95812	3.00640	0.60623
	Ν	2.98752	-1.89033	-0.15076	С	-0.11895	-3.69977	-0.11752
	Ν	2.20502	-3.01669	-0.13722	Н	-0.64619	-3.78399	-1.07254
	С	0.84973	-1.19928	-0.19616	Н	-0.86788	-3.49651	0.65282
CF ₃	С	2.20726	-0.76868	-0.15778	Н	0.35745	-4.65925	0.09508
ļ	С	0.25782	1.11204	-0.16780	С	-2.43973	1.87336	-1.54294
	С	1.66198	1.38196	0.00316	С	2.88199	4.86931	0.91699
	С	-0.18235	-0.22389	-0.18933	Н	3.76903	5.44273	1.16867
, CN	С	1.83916	2.80675	0.29413	С	-4.25957	-1.47652	0.28883
	С	4.40393	-2.02242	-0.09110	С	6.62353	-1.17327	-0.51365
	С	0.93852	-2.63892	-0.15308	Н	7.26784	-0.38608	-0.89381
	С	-2.33419	-0.25222	1.07950	С	1.62920	5.49289	0.91824
	Н	-1.86228	0.36697	1.83619	С	0.46462	4.78685	0.59006
	С	-1.60664	-0.63875	-0.05748	Н	-0.48739	5.30011	0.60217
√ // 7c	С	-1.65446	2.74365	-0.72427	С	7.17966	-2.33724	0.02206
	С	0.57097	3.42903	0.27122	Н	8.25765	-2.45888	0.06582
	С	-0.42686	2.42391	-0.18410	С	6.33656	-3.34589	0.49712
	С	-3.65148	-0.67184	1.25674	Н	6.75618	-4.25638	0.91444
SCF Energy: -1726.17280429a. u.	С	4.95124	-3.19494	0.44654	Ν	-2.70926	5.11218	-0.58609
Num. Imaginary Frequencies: 0	Н	4.29058	-3.97256	0.80898	Ν	-3.09064	1.26880	-2.29577
HOMO energy: -0.23934 eV	С	5.23886	-1.00914	-0.57948	Н	1.55199	6.54413	1.17779
LUMO energy: -0.13124 eV	Н	4.81231	-0.10725	-0.99777	Н	-4.02988	-2.45924	-1.61669
	С	-2.21081	4.06135	-0.64668	Н	-4.20258	-0.37184	2.14141
	С	-3.54975	-1.85730	-0.85327	С	-5.66492	-1.97575	0.50370
	С	-2.23108	-1.44307	-1.02044	F	-6.31555	-2.20143	-0.66169
	Н	-1.69564	-1.71485	-1.92366	F	-6.41453	-1.10589	1.22323
	С	2.99703	3.51008	0.60312	F	-5.67617	-3.15439	1.18869

3.4. Coordinates of the optimized structure for **7d** calculated at the B3LYP/6-31+G(d, p) level theory

	Atom	Х	Y	Z	Atom	Х	Y	Z
	Ν	2.42350	0.61107	-0.01552	С	0.06385	-3.82151	0.00543
	Ν	2.98590	-1.73488	-0.12002	Н	-0.43821	-4.00705	-0.94904
	Ν	2.31170	-2.92852	-0.07156	Н	-0.71408	-3.64737	0.75324
	С	0.79189	-1.24355	-0.15041	Н	0.62687	-4.71819	0.27444
	С	2.10356	-0.68968	-0.13753	С	-2.76231	1.48088	-1.53558
Ļ	С	-0.00441	1.00354	-0.13853	С	2.27363	5.01067	0.82449
	С	1.36900	1.40340	0.00794	Н	3.10619	5.66809	1.05661
U NC	С	-0.33121	-0.36875	-0.13230	С	-4.35424	-1.89426	0.41893
, Y >-CN	С	1.41934	2.84608	0.26191	С	6.53601	-0.68557	-0.52432
	С	4.40764	-1.73496	-0.07689	Н	7.10022	0.15793	-0.91129
\mathbb{N}	С	1.01560	-2.66710	-0.07676	С	0.96986	5.51857	0.81572
	С	-2.50453	-0.45211	1.10261	С	-0.12711	4.70151	0.51118
	Н	-2.10515	0.27010	1.80925	Н	-1.12170	5.12666	0.51204
	С	-1.70818	-0.88368	0.02791	С	7.20402	-1.79260	0.00430
√ // 7c	С	-2.05287	2.43957	-0.74533	Н	8.28914	-1.81411	0.03578
	С	0.10027	3.35092	0.22871	С	6.46237	-2.87402	0.48851
	С	-0.80379	2.24450	-0.19231	Н	6.96861	-3.74188	0.90092
SCE Energy 1522 00554001 e. u	С	-3.78844	-0.94304	1.30456	Ν	-3.31040	4.71023	-0.68466
Num Imaginary Fraguancias: 0	Н	-4.35079	-0.58046	2.15571	Ν	-3.37238	0.82029	-2.27582
HOMO aparaty 0 20740 aV	С	5.06858	-2.85141	0.45378	Н	0.79868	6.56527	1.04764
LUMO energy: 0.11701 eV	Н	4.48654	-3.68622	0.82352	Ν	-5.62777	-2.39295	0.61388
Lowo energy0.11791 ev	С	5.14143	-0.64951	-0.57391	С	-6.48526	-1.80384	1.63232
	Н	4.62853	0.20963	-0.98476	Н	-6.69844	-0.74155	1.43956
	С	-2.72027	3.70603	-0.71176	Н	-7.43222	-2.34421	1.65638
	С	-3.55505	-2.31277	-0.67410	Н	-6.03176	-1.88819	2.62655
	Н	-3.94747	-3.00383	-1.40905	С	-6.23972	-3.22897	-0.40970
	С	-2.26858	-1.82462	-0.85006	Н	-6.35954	-2.70075	-1.36733
	Н	-1.70580	-2.14464	-1.72116	Н	-5.64511	-4.13231	-0.58739
	С	2.50970	3.65929	0.54540	Н	-7.22537	-3.54600	-0.06717
	Η	3.51233	3.24440	0.55627				

6. Fluorescent chemosensors 7a-d for detection of cyanide

Fig. S10. Normalized UV-vis spectra of 50 μ M acetonitrile solutions of 7a-d with different equiv of CN⁻

Fig. S11. Fluorescence spectra of 50 μ M acetonitrile solutions of 7a-d with different equiv of CN

Compound ^a	Equiv CN ⁻	$\lambda_{ab}\left(nm\right)$	$\lambda_{ex}(nm)$	$\lambda_{em}\left(nm\right)$	Stokes shift (nm)	$\phi_{\rm F}{}^b$						
	0	306		488	182	0.011						
7a	1	306	340	489	183	0.026						
	10	272		621	349	0.073						
	0	305		480	175	0.013						
7b	1	278	340	613	335	0.041						
	10	274		623	349	0.079						
	0	305		486	181	0.015						
7c	1	305	345	477	172	0.027						
	10	273		625	352	0.063						
	0	260		550	290	0.181						
- 1	1	260	245	555	295	0.166						
70	10	260	343	560	300	0.161						
	100	260		585	325	0.023						
^a 50 µM. ^b Relativ	^a 50 μ M. ^b Relative quantum yields were taken by using quinine sulfate as a reference ($\phi_{\rm E} = 0.59$ in 0.15 M HClO ₄)											

Table S3. Photophysical properties of compounds 7a-d with different equivalents of CN⁻

7. Copies of NMR spectra

¹H and ¹³C{¹H} NMR spectra of 3-methyl-1,4-diphenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (4a)

¹H and ¹³C{¹H} NMR spectra of 4-(4-methoxyphenyl)-3-methyl-1-phenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4b**)

¹H and ¹³C{¹H} NMR spectra of 3-methyl-1-phenyl-4-(4-(trifluoromethyl)phenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4**c)

¹H and ¹³C{¹H} NMR spectra of 4-(4-(dimethylamino)phenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4d**)

¹H and ¹³C{¹H} NMR spectra of 3-methyl-1-phenyl-4-(*p*-tolyl)indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4e**)

¹H and ¹³C{¹H} NMR spectra of 4-(4-chlorophenyl)-3-methyl-1-phenylindeno[1,2-*b*]pyrazolo[4,3-e]pyridin-5(1*H*)-one (**4f**)

¹H and ¹³C{¹H} NMR spectra of 4-(4-bromophenyl)-3-methyl-1-phenylindeno[1,2-*b*]pyrazolo[4,3-e]pyridin-5(1*H*)-one (**4g**) Chloroform-d

¹H and ¹³C{¹H} NMR spectra of 3-methyl-4-(4-nitrophenyl)-1-phenylindeno[1,2-*b*]pyrazolo[4,3-e]pyridin-5(1*H*)-one (**4h**)

¹H and ¹³C{¹H} NMR spectra of 4-(4-(dimethylamino)phenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4i**)

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-1-phenyl-4-(*p*-tolyl)indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4j**)

¹H and ¹³C{¹H} NMR spectra b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4k**)

¹H and ¹³C{¹H} NMR spectra of 3-(tert-butyl)-4-(4-chlorophenyl)-1-phenylindeno[1,2-

 ^{1}H and $^{13}C{^{1}H}$ NMR spectra of 4-(4-bromophenyl)-3-(*tert*-butyl)-1-phenylindeno[1,2*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (4l)

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-1-phenyl-4-(4-(trifluoromethyl)phenyl)indeno[1,2b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4m**)

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-4-(4-methoxyphenyl)-1-phenylindeno[1,2b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4n**)

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-4-(4-nitrophenyl)-1-phenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4o**)

¹H and ¹³C{¹H} NMR spectra b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4**p)

¹H and ¹³C{¹H} NMR spectra of 3-(tert-Butyl)-1-(4-chlorophenyl)-4-phenylindeno[1,2-

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-1-(4-chlorophenyl)-4-(*p*-tolyl)indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4q**) (Class

S41

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-1,4-*bis*(4-chlorophenyl)indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4r**)

¹H and ¹³C{¹H} NMR spectra of 4-(4-bromophenyl)-3-(*tert*-butyl)-1-(4-chlorophenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4s**)

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-1-(4-chlorophenyl)-4-(4-(trifluoromethyl)phenyl)-indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4**t)

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-butyl)-1-(4-chlorophenyl)-4-(4-methoxyphenyl)indeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4**u)

¹H and ¹³C{¹H} NMR spectra of 3-(tert-butyl)-1-(4-chlorophenyl)-4-(4-nitrophenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-one (**4v**)

¹H and ¹³C{¹H} NMR spectra of 1-(4-chlorophenyl)-3-methyl-4-phenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1*H*)-one (**4**w)

¹H and ¹³C{¹H} NMR spectra of 3-(*tert*-Butyl)-1-(4-nitrophenyl)-4-phenylindeno[1,2-*b*]pyrazolo[4,3-e]pyridin-5(1*H*)-one (**4x**)

 1 H and 13 C{ 1 H} NMR spectra of 2-(4-(Dimethylamino)benzylidene)-1*H*-indene-1,3(2*H*)-dione (**6h**)

¹H and ¹³C{¹H} NMR spectra of 2-(3-Methyl-1,4-diphenylindeno[1,2-*b*]pyrazolo[4,3-*e*]pyridin-5(1H)-ylidene)malononitrile (**7a**)

¹H and ¹³C{¹H} NMR spectra of 2-(4-(4-methoxyphenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-*e*]pyridin-5(1*H*)-ylidene)malononitrile (**7b**)

¹H and ¹³C{¹H} NMR spectra of 2-(3-Methyl-1-phenyl-4-(4-(trifluoromethyl)phenyl)indeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-ylidene)malononitrile (7c)

¹H and ¹³C{¹H} NMR spectra of 2-(4-(4-(Dimethylamino)phenyl)-3-methyl-1-phenylindeno[1,2-b]pyrazolo[4,3-e]pyridin-5(1H)-ylidene)malononitrile (**7d**)

8. ORTEP Drawing for Structure 7b

Fig. S12. ORTEP drawing for structure **7b**. Displacement ellipsoids are drawn at the 70% probability level and hydrogen atoms are shown as small spheres of arbitrary radius.

9. HRMS analysis data of the final products 7a-d

Qualitative Compound Report

Agilent Technologies

Qualitative Compound Report

Printed at: 1:41 PM on:7/11/2017

Qualitative Compound Report

Qualitative Compound Report

Agilent Technologies

10. References

- 1 L. Palatinus and G. Chapuis, J. Appl. Cryst., 2007, 40, 786-790
- 2 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- 3 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.*, 2008, 41, 466-470.
- 4 J. Quiroga, D. Cobo, B. Insuasty, R. Abonía, S. Cruz, M. Nogueras and J. Cobo, J. Heterocycl. Chem., 2008, 45, 155–159.
- 5 J. Portilla, C. Lizarazo, J. Cobo and C. Glidewell, Acta Cryst., 2011, C67, 479–483.
- 6 C. Würth, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, *Nat. Protoc.*, 2013, **8**, 1535–1550.
- 7 U. Resch-Genger and K. Rurack, Pure Appl. Chem., 2013, 85, 2005–2026.
- 8 G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991–1024.
- 9 M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. Cheminform., 2012, 4, 1–17.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 09, Revision A.1. Wallingford CT, 2009.