Supplementary Information for:

Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation

Alioscka A. Sousa
Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil. alioscka.sousa@unifesp.br

Ordinary differential equations for Model 1.

The ODEs below pertain to Model 1 as described in Fig. 1a. The ODEs can be easily modified to reflect the different NP-protein stoichiometries used in the actual simulations (see Eqs. 1 and 2). The ODEs are solved numerically given the rate constants and initial boundary conditions as specified under Section 2.1-Parameter values. Numerical integration was performed with the program Polymath (http://www.polymath-software.com).

$$
\begin{aligned}
& d[N P] / d t=-2 k_{o n, P}[N P][P]+k_{o f f, P}\left[N P \cdot P_{1}\right]-k_{o n, R}[N P][R]+k_{o f f, R}[N P \cdot R]-k_{c l e a r o}[N P] \\
& d[P] / d t=-2 k_{o n, P}[N P][P]+k_{o f f, P}\left[N P \cdot P_{1}\right]-k_{o n, P}\left[N P \cdot P_{1}\right][P]+2 k_{o f f, P}\left[N P \cdot P_{2}\right] \\
& d\left[N P \cdot P_{1}\right] / d t=2 k_{o n, P}[N P][P]-k_{o f f, P}\left[N P \cdot P_{1}\right]-k_{o n, P}\left[N P \cdot P_{1}\right][P]+2 k_{o f f, P}\left[N P \cdot P_{2}\right]- \\
& k_{o n, R}\left[N P \cdot P_{1}\right][R]+k_{o f f, R}\left[N P \cdot P_{1} \cdot R\right]-k_{c l e a r 1}\left[N P \cdot P_{1}\right] \\
& d\left[N P \cdot P_{2}\right] / d t=k_{o n, P}\left[N P \cdot P_{1}\right][P]-2 k_{o f f, P}\left[N P \cdot P_{2}\right]-k_{c l e a r 2}\left[N P \cdot P_{2}\right] \\
& d[R] / d t=-k_{o n, R}[N P][R]+k_{o f f, R}[N P \cdot R]-k_{o n, R}\left[N P \cdot P_{1}\right][R]+k_{o f f, R}\left[N P \cdot P_{1} \cdot R\right] \\
& d[N P \cdot R] / d t=k_{o n, R}[N P][R]-k_{o f f, R}[N P \cdot R] \\
& d\left[N P \cdot P_{1} \cdot R\right] / d t=k_{o n, R}\left[N P \cdot P_{1}\right][R]-k_{o f f, R}\left[N P \cdot P_{1} \cdot R\right] \\
& d\left[N P_{o u t}\right] / d t=k_{c l e a r 0}[N P]+k_{c l e a r 1}\left[N P \cdot P_{1}\right]+k_{c l e a r 2}\left[N P \cdot P_{2}\right]
\end{aligned}
$$

Ordinary differential equations for Model 2.

The ODEs below pertain to Model 2 as described in Fig. 1b. The ODEs can be easily modified to reflect the different NP-protein stoichiometries used in the actual simulations. The ODEs are solved numerically given the rate constants and initial boundary conditions as specified under Section 2.2-Parameter values. Numerical integration was performed with the program Polymath.
$d[N P] / d t=-2 k_{o n, P}[N P][P]+k_{o f f, P}\left[N P \cdot P_{1}\right]-k_{P T 0}[N P]+\left(V_{T} / V_{P}\right) \times k_{T P 0}\left[N P^{T}\right]-$ $k_{\text {clear } 0}[N P]$
$d[P] / d t=-2 k_{o n, P}[N P][P]+k_{o f f, P}\left[N P \cdot P_{1}\right]-k_{o n, P}\left[N P \cdot P_{1}\right][P]+2 k_{o f f, P}\left[N P \cdot P_{2}\right]$
$d\left[N P \cdot P_{1}\right] / d t=2 k_{o n, P}[N P][P]-k_{o f f, P}\left[N P \cdot P_{1}\right]-k_{o n, P}\left[N P \cdot P_{1}\right][P]+2 k_{o f f, P}\left[N P \cdot P_{2}\right]-$ $k_{P T 1}\left[N P \cdot P_{1}\right]+\left(V_{T} / V_{P}\right) \times k_{T P 1}\left[N P^{T} \cdot P_{1}^{T}\right]-k_{\text {clear1 }}\left[N P \cdot P_{1}\right]$
$d\left[N P \cdot P_{2}\right] / d t=k_{o n, P}\left[N P \cdot P_{1}\right][P]-2 k_{o f f, P}\left[N P \cdot P_{2}\right]-k_{P T 2}\left[N P \cdot P_{2}\right]+\left(V_{T} / V_{P}\right) \times k_{T P 2}\left[N P^{T}\right.$.
$\left.P_{2}^{T}\right]-k_{\text {clear } 2}\left[N P \cdot P_{2}\right]$
$d\left[N P^{T}\right] / d t=-2 k_{o n, P}\left[N P^{T}\right]\left[P^{T}\right]+k_{o f f, P}\left[N P^{T} \cdot P_{1}^{T}\right]+\left(V_{P} / V_{T}\right) \times k_{P T 0}[N P]-k_{T P 0}\left[N P^{T}\right]$
$d\left[P^{T}\right] / d t=-2 k_{o n, P}\left[N P^{T}\right]\left[P^{T}\right]+k_{o f f, P}\left[N P^{T} \cdot P_{1}^{T}\right]-k_{o n, P}\left[N P^{T} \cdot P_{1}^{T}\right]\left[P^{T}\right]+2 k_{o f f, P}\left[N P^{T} \cdot P_{2}^{T}\right]$
$d\left[N P^{T} \cdot P_{1}^{T}\right] / d t=2 k_{o n, P}\left[N P^{T}\right]\left[P^{T}\right]-k_{o f f, P}\left[N P^{T} \cdot P_{1}^{T}\right]-k_{o n, P}\left[N P^{T} \cdot P_{1}^{T}\right]\left[P^{T}\right]+2 k_{o f f, P}\left[N P^{T}\right.$.
$\left.P_{2}^{T}\right]+\left(V_{P} / V_{T}\right) \times k_{P T 1}\left[N P \cdot P_{1}\right]-k_{T P 1}\left[N P^{T} \cdot P_{1}^{T}\right]$
$d\left[N P^{T} \cdot P_{2}^{T}\right] / d t=k_{o n, P}\left[N P^{T} \cdot P_{1}^{T}\right]\left[P^{T}\right]-2 k_{o f f, P}\left[N P^{T} \cdot P_{2}^{T}\right]+\left(V_{P} / V_{T}\right) \times k_{P T 2}\left[N P \cdot P_{2}\right]-$ $k_{T P 2}\left[N P^{T} \cdot P_{2}^{T}\right]$
$d\left[N P_{\text {out }}\right] / d t=k_{\text {clear } 0}[N P]+k_{\text {clear } 1}\left[N P \cdot P_{1}\right]+k_{\text {clear } 2}\left[N P \cdot P_{2}\right]$
where V_{P} and V_{T} denote the volumes of the plasma and tumor compartments, respectively. As the ratio $V_{\mathrm{P}} / V_{\mathrm{T}}$ represents only a scaling factor, an arbitrary value of 1 is assumed for simplicity.

Table S1. Experimental plasma clearance data for ultrasmall metal NPs.

Entry	NP core	NP coating	$\begin{gathered} \text { HD } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} t_{1 / 2 \alpha} \\ (\mathrm{~min}) \end{gathered}$	$t_{1 / 2 \beta}$ (h)	\%ID in urine at 24 h p.i. ${ }^{4}$	Ref.
1	Ag^{1}	GSH	3.1	1.6	22.2	51	[1]
2	$\mathrm{Ag}-\mathrm{Au}^{1}$	GSH	3.1	2.4	21.4	53	[1]
3	$\mathrm{Ag}-\mathrm{Au}^{1}$	GSH	3.1	3.5	20.3	49	[1]
4	$A u^{1}$	GSH	3.1	5.1	16.5	46	[1]
5	Au	PEG	5.5	56.1	9.2	~ 55	[2]
6	Au	GSH	3.3	5.4	8.5	~ 55	[2]
7	$A u^{2}$	GSH	~ 1	7.1	11.2	19	[3]
8	$A u^{2}$	GSH	~1	11.5	9.5	23	[3]
9	Au^{2}	GSH	~ 1	4.9	10.3	27	[3]
10	$A u^{2}$	GSH	~ 1	4.5	12.3	52	[3]
11	Au	Gly-Cys	3.1	2.5	4.3	42	[4]
12	Au	Cys	2.7	3.2	4.9	21	[4]
13	Au	GSH	3.0	5.0	12.7	~ 45	[5]
14	Au^{3}	GSH	3.3	3.5	7.0	39	[6]
15	Au^{3}	GSH	3.3	2.6	3.3	43	[6]
16	Au^{3}	GSH	3.3	1.5	0.79	71	[6]
17	Au	GSH	3.0	0.73	8.1	52	[7]

1. NPs of different core compositions but same surface coating. The Ag : Au ratios are (from top to bottom): 1:0, 8.4:1, $0.64: 1$ and 0:1.
2. Atomically precise nanoclusters with formulas $\mathrm{Au}_{10-11} \mathrm{GSH}_{10-11}, \mathrm{Au}_{15} \mathrm{GSH}_{13}, \mathrm{Au}_{18} \mathrm{GSH}_{14}$ and $\mathrm{Au}_{25} \mathrm{GSH}_{18}$ (from top to bottom). Here the $t_{1 / 2 \alpha}$ and $t_{1 / 2 \beta}$ were calculated by fitting of Eq. 3 to the data provided in the Supplementary Table 3 in ref. [3].
3. Pharmacokinetic data was recorded using the same NPs under different injection doses. Here the $t_{1 / 2 \alpha}$ and $t_{1 / 2 \beta}$ were calculated from the data provided in the Supplementary Fig. S7 in ref. [6].
4. Values of \%ID in the urine are included for reference. Entries 1-4: \%ID at 48 h p.i.

Table S2. Experimental plasma clearance data for some protein drugs. Selected proteins cover a range of molecular weights from 7 to 80 KDa . Clearance data for smaller molecular tracers (first two rows) and larger proteins (last three rows) are also shown for comparison.

Molecule	MW (KDa)	HD $(\mathrm{nm})^{1}$	$t_{1 / 2 \alpha}$ $(\mathrm{~min})$	$t_{1 / 2 \beta}$ $(\mathrm{~h})$	Ref.
${ }^{177}$ Lu-DOTA	0.58	1.5	0.17	0.34	$[8]$
IR Dye	1.1	1.9	6.3	0.98	$[9]$
Affibody	7	3.5	14.7	23	$[10]$
Affibody dimer	15.6	4.5	13.4	5.8	$[10]$
scFv	27	5.5	12.9	6.3	$[10]$
scFv	28	5.5	5	4	$[11]$
scDb	54.5	6.9	10.2	5.6	$[12]$
scFv dimer	55	6.9	35.4	13.8	$[10]$
taFv	56	7.0	9	26	$[11]$
Minibody	80	7.8	62.7	9.9	$[10]$
scDb-PEG40 ${ }^{2}$	95	8.3	31	13	$[12]$
taFv-HSA ${ }^{3}$	121	9.0	37	40	$[11]$
IgG	145	9.5	43.8	39	$[12]$

1. The hydrodynamic diameter (HD) of all molecules was estimated as $\mathrm{HD}=1.82 * \mathrm{MW}^{0.333}$ for consistency (ref. [10])
2. PEGylated recombinant diabody
3. Recombinant antibody-albumin fusion protein

Figure S1. Systemic clearance (a) and vascular extravasation (b) rates for NPs and NP-protein complexes as a function of compound size. Sizes were calculated according to Eqs. 1 and 2, whereas $k_{\text {clear }}$ and $k_{\text {PT }}$ were estimated with Eqs. 5 and 9, respectively. NPs of 1,3 and 4 nm in size have maximum binding capacities of 1,6 and 10 plasma proteins, respectively. Naked NPs are indicated with arrows.

Figure S2. Time course of NP species in the compartment and extent of receptor occupancy for Sim \#2. (a) Time course of $N P_{\text {tot }}$. The half-life for systemic clearance of $N P_{\text {tot }}$ for each value of $K_{\mathrm{D}, \mathrm{P}}$ is given by the intercept of the dashed line with each corresponding decay curve. (b) Time course of $N P_{\text {free. }}$. (c) Time course of $N P_{\text {Pc. }}$. (d) Time course of $N P_{\text {fc. }}$. (e) Receptor occupancy as a function of time. (f) Area under the curve for receptor occupancy as a function of $K_{\mathrm{D}, \mathrm{P}}$; calculated from e) with Eq. 7. Dashed line marks the calculated value of $A \cup C_{R}(0.43)$ in the absence of soft interactions.

$$
\begin{array}{ccccc}
& -5 \mu \mathrm{M} & -10 \mu \mathrm{M} & -20 \mu \mathrm{M} & -50 \mu \mathrm{M} \\
K_{\mathrm{D}, \mathrm{P}}-0.5 \mathrm{mM}=1 \mathrm{mM} & -2 \mathrm{mM} & -5 \mathrm{mM}=\text { no int. }
\end{array}
$$

Figure S3. Time course of NP species in the compartment and extent of receptor occupancy for Sim \#3. (a) Time course of $N P_{\text {tot. }}$ (b) Time course of $N P_{\text {free. }}$. (c) Time course of $N P_{\text {fc. }}$ (d) Receptor occupancy as a function of time. (e) Area under the curve for receptor occupancy as a function of $K_{\mathrm{D}, \mathrm{P}}$; calculated from d) with Eq. 7. Dashed line marks the calculated value of $A \cup C_{R}$ (0.046) in the absence of soft interactions.

Figure S4. Time course of NP species in the compartment and extent of receptor occupancy for Sim \#4. (a) Time course of $N P_{\text {tot. }}$. The half-life for systemic clearance of $N P_{\text {tot }}$ for each value of $K_{\mathrm{D}, \mathrm{P}}$ is given by the intercept of the dashed line with each corresponding decay curve. (b) Time course of $N P_{\text {free. }}$. (c) Time course of $N P_{\text {Pc. }}$ (d) Time course of $N P_{\text {fc. }}$. (e) Receptor occupancy as a function of time. (f) Area under the curve for receptor occupancy as a function of $K_{\mathrm{D}, \mathrm{P}}$; calculated from e) with Eq. 7. Dashed line marks the calculated value of $A \cup C_{R}(0.12)$ in the absence of soft interactions.

$$
\begin{array}{cccc}
K_{\mathrm{D}, \mathrm{P}}=5 \mathrm{mM}=0.5 \mathrm{mM}=1 \mathrm{mM}=2 \mathrm{mM} \\
=5 \mathrm{mM} & -10 \mathrm{mM} \quad 20 \mathrm{mM}=\text { no int. }
\end{array}
$$

Figure S5. Time course of NP species in the compartment and extent of receptor occupancy for Sim \#5. (a) Time course of $N P_{\text {tot }}$. The half-life for systemic clearance of $N P_{\text {tot }}$ for each value of $K_{\mathrm{D}, \mathrm{p}}$ is given by the intercept of the dashed line with each corresponding decay curve. (b) Time course of $N P_{\text {free. }}$. (c) Time course of $N P_{\text {Pc. }}$. (d) Time course of $N P_{\text {fc. }}$. (e) Receptor occupancy as a function of time. (f) Area under the curve for receptor occupancy as a function of $K_{\mathrm{D}, \mathrm{P}}$; calculated from e) with Eq. 7. Dashed line marks the calculated value of $A \cup C_{R}(0.43)$ in the absence of soft interactions.

Figure S6. Time course of NP species in the compartment and extent of receptor occupancy for Sim \#6. (a) Time course of $N P_{\text {tot }}$. The half-life for systemic clearance of $N P_{\text {tot }}$ for each value of $K_{\mathrm{D}, \mathrm{p}}$ is given by the intercept of the dashed line with each corresponding decay curve. (b) Time course of $N P_{\text {free }}$. (c) Time course of $N P_{\text {Fc }}$. (d) Receptor occupancy as a function of time. (e) Area under the curve for receptor occupancy as a function of $K_{\mathrm{D}, \mathrm{p}}$; calculated from d) with Eq. 7. Dashed line marks the calculated value of $A \cup C_{R}(0.046)$ in the absence of soft interactions.

Figure S7. Extent of receptor occupancy assuming the model parameters in Sim \#7. Area under the curve for receptor occupancy as a function of $K_{\mathrm{D}, \mathrm{p}}$. Dashed line marks the calculated value of $A U C_{R}$ (0.018) in the absence of soft interactions.
b

$$
\begin{array}{cccc}
K_{\mathrm{D}, \mathrm{P}} & =0.1 \mathrm{mM} & -0.5 \mathrm{mM} & =1 \mathrm{mM} \\
& 5 \mathrm{mM} & -10 \mathrm{mM} & \text { no int. }
\end{array}
$$

Figure S8. Time course of $N P_{\text {tot }}$ assuming the model parameters in Sim \#9 (a), \#10 (b), \#11 (c) and \#12 (d). Half-life for systemic clearance of $N P_{\text {tot }}$ for each value of $K_{\mathrm{d}, \mathrm{p}}$ is given by the intercept of the dashed line with each corresponding decay curve. In d), the $N P_{\text {tot }}$ concentration does not fall down to 'zero' because a significant amount of NPs that have extravasated remain trapped in the peripheral compartment.

Figure S9. Time course of NP species and \%ID assuming the model parameters in Sim \#13 and \#14. (a) Time course of $N P_{\text {tot, }}$ (b) time course of $N P^{\top}$ tot , and (c) \%ID as a function of $K_{\mathrm{D}, \mathrm{p}}$ for Sim \#13. (d,e,f) Same for Sim \#14. Values of \%ID were calculated from b) and e) with Eq. 10. Halflife for systemic clearance of $N P_{\text {tot }}$ for each value of $K_{\mathrm{D}, \mathrm{p}}$ is given by the intercept of the dashed line with each corresponding decay curve in a) and d). Dashed lines in c) and f) mark the calculated values of \%ID (2 and 4.2%) in the absence of soft interactions.

References

1. S. Tang, C. Peng, J. Xu, B. Du, Q. Wang, R. D. Vinluan III, M. Yu, M. J. Kim and J. Zheng, Angew. Chem. Int. Ed., 2016, 128, 16273-16277.
2. J. Liu, M. Yu, X. Ning, C. Zhou, S. Yang and J. Zheng, Angew. Chem. Int. Ed., 2013, 52, 12572-12576.
3. B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu, R. Jin and J. Zheng, Nat. Nanotech., 2017, 12, 1096.
4. X. Ning, C. Peng, E. S. Li, J. Xu, R. D. Vinluan III, M. Yu and J. Zheng, APL Materials, 2017, 5, 053406.
5. C. Zhou, G. Hao, P. Thomas, J. Liu, M. Yu, S. Sun, O. K. Öz, X. Sun and J. Zheng, Angew. Chem. Int. Ed., 2012, 51, 10118-10122.
6. J. Xu, M. Yu, C. Peng, P. Carter, J. Tian, X. Ning, Q. Zhou, Q. Tu, G. Zhang and A. Dao, Angew. Chem. Int. Ed., 2018, 57, 266-271.
7. C. Peng, X. Gao, J. Xu, B. Du, X. Ning, S. Tang, R. M. Bachoo, M. Yu, W.-P. Ge and J. Zheng, Nano Res., 2017, 10, 1366-1376.
8. K. D. Orcutt, K. A. Nasr, D. G. Whitehead, J. V. Frangioni and K. D. Wittrup, Mol. Imag. Biol., 2011, 13, 215-221.
9. J. Liu, M. Yu, C. Zhou, S. Yang, X. Ning and J. Zheng, J. Am. Chem. Soc., 2013, 135, 4978-4981.
10. M. M. Schmidt and K. D. Wittrup, Mol. Cancer Ther., 2009, 8, 2861-2871.
11. D. Müller, A. Karle, B. Meißburger, I. Höfig, R. Stork and R. E. Kontermann, J. Biol. Chem., 2007, 282, 12650-12660.
12. R. Stork, K. A. Zettlitz, D. Müller, M. Rether, F.-G. Hanisch and R. E. Kontermann, J. Am. Chem. Soc., 2008, 283, 7804-7812.
