Electronic Supporting Information

Synthesis and Photovoltaic Application of NIRemitting Perylene-monoimide Dyes with Large Stokes-shift

Vikas Sharma,^{a‡} Kovida,^{a‡} Dhananjaya Sahoo,^a Nonu Varghese,^b Kallol Mohanta*^b and Apurba Lal Koner*^a

^a Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India, E-mail: akoner@iiserb.ac.in

^b Department of Physics, PSG College of Technology & PSG Institute of Advanced Studies, Peelamedu, Avinashi Road, Coimbatore - 641004, Tamilnadu, India.

^{*} these authors contributed equally to this work

Table of Content

General procedure: Materials and Methods	3-4
Scheme 1. Synthesis of PMI derivatives	5-6
Table S1. Solvent-dependent photophysical properties.	7
Figure S1. Solvent-dependent UV-Vis spectra of 2a	8
Figure S2. Solvent-dependent fluorescence spectra of 2a	8
Figure S3. Solvent-dependent fluorescence lifetime decay of 2a	9
Figure S4. Optical purity of 2a	9
Figure S5. Solvent-dependent UV-Vis spectra of 2b	10
Figure S6. Solvent-dependent fluorescence spectra of 2b	10
Figure S7. Solvent-dependent fluorescence lifetime decay of 2b	11
Figure S8. Optical purity of 2b	11
Figure S9. Solvent-dependent UV-Vis spectra of $2c$	12
Figure S10. Solvent-dependent fluorescence spectra of 2c	12
Figure S11. Solvent-dependent fluorescence lifetime decay of 2c	13
Figure S12. Optical purity of 2c	13
Figure S13. Frontier molecular orbital profiles of molecules 2a	14
Figure S14. Fiontier molecular orbital profiles of molecules 20	14
Table S ² : Single-crystal analysis of 2 c	15
Figure S16: ¹ H NMR spectrum of compound 2a recorded in CDCl ₂	10
Figure S17: ¹ 13 NMR spectrum of compound $2a$ recorded in CDCl ₃	18
Figure S18: ¹ H NMR spectrum of compound 2b recorded in CDCl ₂	19
Figure S10: 113 NMR spectrum of compound 2b recorded in CDCL.	20
Figure S20: UNMP spectrum of compound 2s recorded in CDCl ₃	20
Figure S20. In NMR spectrum of compound 2c feedback in $CDCI_3$	21
Figure S21: 13 NMR spectrum of compound $2c$ recorded in CDCl ₃	22
Figure S22: APCI Mass spectrum of compound 2a	23
Figure S23: APCI Mass spectrum of compound 2b	24
Figure S24: APCI Mass spectrum of compound 2c	25
Figure S25: IR spectrum of compound 2a	26
Figure S26: IR spectrum of compound 2b	26
Figure S27: IR spectrum of compound 2c	27

(A) General Proceduce:

(a) Chemicals:

All the solvents and reagents were purchased from commercial sources and were used as received. Perylene-3,4,9,10-tetracarboxylic dianhydride, Ethylhexylamine, 4-Ethynyl-N,N-dimethylaniline, Dichlorobis(triphenylphosphine)palladium(II), (Triisopropylsilyl)acetylene and CuI were purchased from Sigma Aldrich. Zn(OAc)₂.2H₂O and liquid Br₂ were purchased from Merck. Molten imidazole was purchased from Spectrochem. Tetrakis(triphenylphosphine)palladium(0) and *p*-tolylacetylene was purchased from TCI. For coupling reactions, THF, TEA and DIPEA were purchased from Ranchem, Spectrochem and Sigma Aldrich respectively.

(b) Steady State Measurements:

All the spectroscopic grade solvents like Acetonitrile, DCM, DMSO, EtOH, THF, Toluene, Dioxane, CHCl₃ were purchased from SRL, DMF was purchased from Sigma. The stock solutions of 1 mM concentration of dye were made in Toluene. The concentration of dyes was kept 5 μ M for all the measurements. All steady-state absorption and fluorescence measurements were carried out using Cary 5000 UV-spectrophotometer from Agilent Technologies using 1 cm path length quartz cuvettes. All solvent dependent steady-state fluorescence measurements were carried out using HORIBA Jobin Yvon Fluorolog fluorimeter using Origin 8.0 software provided with the instrument. Fluorescence spectra were recorded using 1 cm path length quartz cuvette and keeping both excitation and emission slit at 2 nm with very dilute solutions having OD less than 0.1 at excitation wavelength. All the experiments were carried out at ambient temperature (298 K) as otherwise mentioned.

(c) Fluorescence Lifetime Measurement Using Time Resolved Single Photon Counting

Time-resolved fluorescence measurements were performed using a Hamamatsu MCP photomultiplier (R-3809U-50). All the measurements were carried out at ambient temperature (298 K) using a very dilute solution with OD less than 0.1. The concentration of dyes was kept at 5 μ M.

(d) Electrochemical Measurements:

Electrochemical measurements were carried out using a CHI 6205 electrochemical analyzer using tetra-*n*-butylammoniumhexafluoro-phosphate as the supporting electrolyte (0.1 M) and the dye concentration was *ca*. 10^{-3} M. For a tpical electrochemical measurement a glassy carbon as working electrode, Pt wire as counter electrode and aqueous saturated Ag/AgCl as reference electrode were used. In this cell, all the voltammogram were measured at 0.1 V/s scan rate in dichloromethane. The dye solution in dichloromethane was purged with nitrogen for 15 minutes to remove dissolved oxygen. Every time before measurement the electrode was polished on a felt pad with alumina and washed thoroughly. All the measurements were repeated at least three times for reproducibility.

(e) Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry:

¹H and ¹³C{¹H} NMR spectra were recorded on Bruker spectrometer in CDCl₃ solvent. Chemical shifts were reported in ppm scale with respect to the residual solvent signal at δ = 7.26 in CDCl₃ for ¹H NMR at 500 MHz. The mass spectra for all the compounds were recorded using APCI with solutions of dyes in Chloroform.

(f) Density Functional Theory (DFT) Calculations:

The theoretical calculations to obtain HOMO-LUMO profiles of all the compounds were done using Biovia Materials Studio version 2017 with B3LYP as the functional and DNP (double numerical polarized) as the basis set.

(g) **Photovoltaic Device fabrication:** The PMI-(NMe₂)₄ molecule was blended with the [6,6]-Phenyl C61 butyric acid methyl ester (PC₆₁BM) at 1:4 ratio and the concentration was maintained as 5 mg/ml in 1,2-dichlorobenzene. The mixture was then spin-coated on the top of cleaned ITO substrates. The spin-coating condition was 1500 rpm for 60 sec. A short drying period of 30 min at 80 °C was carried out before the 300 nm Al electrode was deposited over the thin film.

(B) Synthesis:

(a) Synthesis of PMI-(NMe₂)₄ (2a): Tetrabromo PMI (100 mg, 0.1334 mmol), 4-Ethynyl-N,N-dimethylaniline (116.3 mg, 0.8009 mmol) were taken in a Schlenk tube. To this, dry THF (1 mL), N, N-Diisopropylethylamine (1 mL) were added and the mixture was stirred for 5 minutes at room temperature. The resulting solution was degassed thrice by freeze pump thaw cycles. Then Pd(PPh₃)₄ (28.2 mg, 0.0244 mmol) and CuI (25.2 mg, 0.1321 mmol) were added to the Schlenk tube under N₂ atmosphere. The reaction mixture was evacuated and flushed with N₂ twice followed by heating at 80 °C for 15 h. After that it was cooled to room temperature. Solvent was evaporated using rotary evaporator and the residue was purified by column chromatography (Neural alumina, 2:1 DCM-Hexane eluent) providing the desired compound (45 % yield).

¹**H NMR (500 MHz, CDCl₃):** δ 9.85 (d, *J* = 8.2 Hz, 2H), 8.79 (s, 2H), 7.99 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.9 Hz, 4H), 7.36 (d, *J* = 8.9 Hz, 4H), 6.74 (d, *J* = 8.9 Hz, 4H), 6.53 (d, *J* = 8.9 Hz, 4H), 4.17 (m, 2H), 3.05 (s, 12H), 2.98 (s, 12H), 1.98 (m, 1H), 1.39 (m, 8H), 0.96 (t, *J* = 7.5 Hz, 3H), 0.90 (t, *J* = 7.1 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 164.03, 150.57, 150.20, 137.35, 135.71, 133.51, 133.34, 133.12, 128.42, 127.34, 125.01, 119.60, 118.88, 112.10, 111.79, 110.96, 109.82, 102.47, 97.42, 90.48, 89.75, 40.37, 40.33, 38.09, 31.00, 28.96, 24.29, 23.24, 14.30, 10.84.

APCI-HRMS (1006.5067 g/mol calcd. for C₇₀H₆₃N₅O₂): m/z 1006.4982 [M+H]

IR: frequency/ cm⁻¹: 2950 (CH, m), 2180 (C=C, w), 1680 (C=O, s), 1665 (C=C, w), 1350 (C-N, s) and 1130 (C-N, m), 710 (CH bending, s) and 860 (C=C bending, m)

(b) Synthesis of PMI-(MeO)₄ (2b): TetrabromoPMI (40 mg, 0.053 mmol), 4-Ethynylanisole (38 μ L, 0.293 mmol) were taken in a Schlenk tube. To this, dry THF (1 mL), triethylamine (1 mL) were added and the mixture was stirred for 5 minutes at room temperature. The resulting solution was degassed thrice by freeze pump thaw cycles. Then PdCl₂(PPh₃)₂ (3.86 mg, 0.0055 mmol) and CuI (6.47 mg, 0.034 mmol) were added to the Schlenk tube under N₂ atmosphere. The reaction mixture was evacuated and flushed with N₂ twice followed by heating at 60°C for 12 h. After that it was cooled to room temperature. Solvent was evaporated using rotary evaporator and the residue was purified by column chromatography (Silica, 1:1 DCM-Hexane eluent) affording the desired compound (60%) yield.

¹**H NMR (500 MHz, CDCl₃):** δ 9.74 (d, *J* = 8.2 Hz, 2H), 8.75 (s, 2H), 7.97 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 8.8 Hz, 4H), 7.36 (d, *J* = 8.8 Hz, 4H), 6.96 (d, *J* = 8.8 Hz, 4H), 6.71 (d, *J* = 8.8 Hz, 4H), 4.15 (m, 2H), 3.87 (s, 6H), 3.80 (s, 6H), 1.96 (m, 1H), 1.38 (m, 8H), 0.96 (t, *J* = 7.4 Hz, 3H), 0.90 (t, *J* = 7.0 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 163.51, 160.29, 159.81, 137.47, 135.67, 133.80, 133.49, 133.38, 128.46, 127.27, 124.32, 119.76, 118.40, 115.93, 115.13, 114.41, 113.82, 100.73, 96.20, 90.58, 89.70, 55.49, 55.43, 44.20, 38.06, 30.99, 28.92, 24.26, 23.23, 14.29, 10.78.

APCI-HRMS (954.3789 g/mol calcd for C₆₆H₅₁NO₆): m/z 954.3716 [M+H]

IR: frequency/ cm⁻¹: 2950 (C-H, m), 2180 (C=C, w), 1680 (C=O, s), 1670 (C=C, m), 1250 (C-O, s), 1150 (C-N, m), 1110 (C-C, m), 820 (C=C bending, m)

(c) Synthesis of PMI-(TIPS)₄ (2c): TetrabromoPMI (40 mg, 0.053 mmol), (Triisopropylsilyl)acetylene (69 μ L, 0.293 mmol) were taken in a Schlenk tube. To this, dry THF (1 mL), triethylamine (1 mL) were added and the mixture was stirred for 5 minutes at room temperature. The resulting solution was degassed thrice by freeze pump thaw cycles. Then PdCl₂(PPh₃)₂ (3.86 mg, 0.0055 mmol) and CuI (6.47 mg, 0.034 mmol) were added to the Schlenk tube under N₂ atmosphere. The reaction mixture was evacuated and flushed with N₂ twice followed by heating at 60°C for 18 h. After that it was cooled to room temperature. Solvent was evaporated using rotary evaporator and the residue was purified by column chromatography (Silica, 1:1 DCM:Hexane eluent) affording the desired compound (72% yield).

¹H NMR (500 MHz, CDCl₃): δ 9.89 (d, J = 8.2 Hz, 2H), 8.76 (s, 2H), 7.92 (d, J = 8.2 Hz, 2H), 4.14 (m, 2H), 1.99 – 1.90 (m, 1H), 1.37 (m, 8H), 1.20 (dd, J = 8.3, 3.3 Hz, 71H), 0.95 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃): δ 163.76, 139.02, 137.19, 136.93, 129.93, 129.42, 128.51, 128.07, 127.32, 124.84, 120.10, 118.61, 108.41, 108.17, 106.89, 99.80, 44.49, 38.15, 31.02, 29.00, 24.28, 19.17, 18.94, 14.27, 12.09, 11.58, 10.82.

APCI-HRMS (1154.7431 g/mol calcd for C₃₉H₃₃NO₂): m/z 1154.7379 [M+H]

IR: frequency/ cm⁻¹: 2950 (C-H, s), 2250 (C≡C, w), 1680 (C=O, m), 1660 (C=C, w), 1250 (C-N, m), 810 (C=C bending, s), 700 (C-H bending, s)

Table S1: Solvent-dependent photophysical p	properties
---	------------

Compound	Solvents	$\frac{\boldsymbol{\varepsilon} \times 10^{4}}{(M^{-1}cm^{-1})}$ $(\lambda_{max/nm}^{Abs})$	λ_{max}^{Em} (nm)	□□(cm ⁻ ¹) ^a	τ _{avg} (ns)
2a	CHCl ₃	8.09, (665)	869	3530	1.0
	DCM	7.60, (667)	879	3616	0.4
	Dioxane	5.31, (653)	838	3381	1.6
	THF	8.31, (666)	880	3651	0.2
	Toluene	8.44, (665)	879	3661	2.2
	ACN	2.85 (615)	847	4454	nd
2b	CHCl ₃	7.72, (618)	688	1646	3.3
	DCM	7.24, (612)	688	1805	3.2
	Dioxane	8.66, (606)	658	1304	4.2
	DMF	8.50, (610)	701	2128	2.5
	THF	8.62, (610)	675	1578	3.4
	Toluene	8.92, (614)	659	1112	4.3
2c	CHCl ₃	4.74, (580)	627	1292	5.1
	DCM	4.42, (577)	625	1331	5.2
	Dioxane	5.62, (570)	607	1069	5.5
	DMF	5.72, (569)	626	1601	5.0
	THF	5.68, (569)	612	1235	5.4
	Toluene	5.84, (575)	606	889	5.5

^a Stokes shift (SS), $\bar{\nu}_a - \bar{\nu}_f$, nd- not determined

Fig. S1: Verification of optical purity by matching UV-Vis. and excitation spectra of 2a in Toluene

Fig. S2: Solvent-dependent UV-Vis. Spectra of 2a at 5 μ M concentration

Fig. S3: Solvent-dependent fluorescence spectra of 2a at 5 μ M concentration

Fig. S4: Solvent-dependent fluorescence decay lifetime of 2a

Fig. S5: Verification of optical purity by matching UV-Vis. and excitation spectra of **2b** in Toluene

Fig. S6: Solvent-dependent UV-Vis. spectra of 2b at 5 μ M concentration

Fig. S7: Solvent-dependent fluorescence spectra of 2b at 5 μ M concentration

Fig. S8: Solvent-dependent fluorescence lifetime decay of 2b

Fig. S9: Verification of optical purity by matching UV-Vis. and excitation spectra of 2c in Toluene

Fig. S10: Solvent-dependent UV-Vis spectra of 2c at 5 μ M concentration

Fig. S11: Solvent-dependent fluorescence spectra of 2c at 5 μ M concentration

Fig. S12: Solvent-dependent fluorescence decay lifetime of 2c

Correlation of dipole moment with Stokes shift of PMI derivatives (2a-c):

To understand the solvent effects on the optical properties of fluorophores the fluorophore molecule is considered as a dipole in a continuous solvent dielectric. However, the interactions between solvent molecules and dipoles originated from fluorophores affect the energy difference between the ground and excited states, and results spectral shifts. Lets consider μ_g and μ_e are ground and excited state dipole moments, respectively. The difference of dipole moment can be determined from the Stokes value. In order to get a feel of polarization dependence of spectral profiles, however, the $E_T(30)$ function, i.e. molar transition energy, which is an empirical measure of solvent polarity and is based on solvatochromic behaviour of a betaine dye as a probe solute, is of particular interest. However, to avoid certain dimensionality problems, the normalized $E_T(30)$ function, viz., $E_T(N)$ is often employed.¹ An empirical correlation of spectral shift with $E_T(N)$ has been developed ¹ according to which,

$$\bar{\nu}_a - \bar{\nu}_f = 11307.6 \left[\left(\frac{\Delta \mu}{\Delta \mu_B} \right)^2 - \left(\frac{a_B}{a} \right)^3 \right] E_T^N + constant$$

Where $\Delta \mu_B$ and a_B designate dipole moment change on excitation and Onsager radius, respectively, for betaine dye. Similarly, the terms $\Delta \mu$ and 'a' are the corresponding values for the unknown molecule under study. The values of solute radii were in turn estimated by calculating the Van der Waals volumes $(V_{VdW} = \frac{4}{3}\pi a^3)$ using the reported method.²

A linear plot of the Stokes shift versus $E_{T}(N)$ results in the slope 'm' which can be expressed

$$m = 11307.6 \left[\left(\frac{\Delta \mu}{\Delta \mu_B} \right)^2 \left(\frac{a_B}{a} \right)^3 \right]$$
 Where for betaine dye $\Delta \mu_B = 9D$ and $a_B 6.2$ Å

For compound **2a**: $V_{VdW} = 975.14 \text{ Å}^3$, a = 6.15 Å, slope from figure R2 (a) m=2350 and $\Delta \mu$ (change in dipole moment upon excitation)= 3.49 D

For compound **2b**: $V_{VdW} = 897.02$ Å³, a=5.98 Å, slope from figure R2(b), m=3463 and $\Delta\mu$ (*change in dipole moment upon excitation*)= 4.75 D

For compound **2c**: $V_{VdW} = 1267.02 \text{ Å}^3$, a=6.71 Å, slope from figure R2(c), m=2306 and $\Delta\mu$ (change in dipole moment upon excitation)= 4.75 D

Fig. S13: Plot of Stokes shift versus solvent polarity parameter $E_{\rm T}({\rm N})$ for (a) 2a, (b) 2b, and (c) 2c.

Fig. S14: Frontier molecular orbital profiles of molecules 2a

Fig. S15: Frontier molecular orbital profiles of molecules 2b

Solar-cell device fabrication: The device fabrication process and the device structure have been given in supplementary information. In brief, the solar cell has been composed in traditional configuration, *i.e.*, the transparent electrode, indium tin oxide (ITO) was the anode. A bare device without any buffer layer has been prepared. The band diagram of the device is also given as Figure S16.

Fig. S16: Band-diagram of the bare solar cell prepared from 2a and PCBM.

X-ray crystallography:

Suitable crystals for X-ray crystallography were obtained grown by slow diffusion of methanol into a solution of the compound **2c** in hexane. Single-crystal X-ray diffraction data were collected using a Bruker SMART APEX II CCD diffractometer with graphite monochromated Mo K_{α} ($\lambda = 0.71073$ Å) radiation at room temperature.

Empirical formula: C₇₄H₁₀₇NO₂Si₄

Formula weight: 1155.02 g/mol

Temperature / Wavelength: 296(2) K_{α} 0.71073 Å

Crystal system / space group: Triclinic P-1

Unit cell dimensions: a = 12.0158(4) Å, b = 15.2970(4) Å, c = 21.9620(7) Å, $\alpha = 71.487(2)$ °, $\beta = 74.306(2)$ °, $\gamma = 67.734(2)$ °

Unit cell volume / units Z: 3490.2(2) Å³ 4

Absorption coefficient / F(000): 0.257 mm⁻¹

 $\Theta\text{-range}$ for data collection: 0.992 to 28.283 $^{\rm o}$

Limiting indices: -16≤h≤15 20≤k≤20 -29≤l≤27

Reflections collected / unique: 9907/ 8036 [$R_{int} = 0.1360$]

Reflections observed $[I > 2 \Box(I)]$: 8036

Completeness to $\Theta = 25.242, 89.2\%$

Absorption correction: Semi-emperical from equivalents

Goodness-of-fit on F²: 1.415

Final R indices $[I > 2\sigma (I)]$: R1 = 0.1360 ω R2 = 0.4512

R indices (all data): $R1 = 0.2330 \ \omega R2 = 0.3923$

Largest diff. peak and hole: 1.508 and -1.163 e/Å³

CCDC number: 1911385

Characterization: ¹H-NMR, ¹³C{¹H}-NMR and mass spectra of the synthesized compounds

Fig. S17: ¹H NMR spectrum of compound 2a recorded in CDCl₃ at 500 MHz

Fig. S18: ¹³C NMR spectrum of compound 2a recorded in CDCl₃ at 126 MHz

Fig. S19: ¹H NMR spectrum of compound 2b recorded in CDCl₃ at 500 MHz

Fig. S20: ¹³C NMR spectrum of compound 2b recorded in CDCl₃ at 126 MHz

Fig. S21: ¹H NMR spectrum of compound 2c recorded in CDCl₃ at 500 MHz

Fig. S22: ¹³C NMR spectrum of compound 2c recorded in CDCl₃ at 126 MHz

Fig. S23: Mass spectrum of compound 2a

Fig. S24: Mass spectrum of compound 2b

Fig. S25: Mass spectrum of compound 2c

Fig. S27: IR spectrum of compound 2b

Fig. S28: IR spectrum of compound 2c

1. Ravi, M.; Samanta, A.; Radhakrishnan, T. P., Excited State Dipole Moments from an Efficient Analysis of Solvatochromic Stokes Shift Data. *J. Phys. Chem.* **1994**, *98*, 9133-9136.

2. Zhao, Y. H.; Abraham, M. H.; Zissimos, A. M., Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. *J. Org. Chem.* **2003**, *68*, 7368-7373.