Electronic Supplementary Information

Direct 3D Printing of Graphene Oxide Hydrogel for Fabrication of High Areal Specific Capacitance Micro-supercapacitor

Xiawei Yun,^{#a} Bingchuan Lu,^{#b,c,d} Zhiyuan Xiong,^a Bo Jia,^{b,c,d} Bo Tang,^a Henan Mao,^a Ting

Zhang,*b,c,d Xiaogong Wang*a

^a Department of Chemical Engineering, Laboratory of Advanced Materials (MOE),

Tsinghua University, Beijing 100084, P. R. China

^b Biomanufacturing Center, Department of Mechanical Engineering,

Tsinghua University, Beijing 100084, P. R. China

^c Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing,

Beijing 100084, P. R. China

^d Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base),

Beijing 10084, P. R. China

Fig. S1. Dimensional drawing of a single layer of the printed 3D structure (top-view).

Fig. S2. Test tube inversion experiment of the highly concentrated GO suspension (17.5 mg mL⁻¹).

Table S1. Concentration, volume fraction (Φ_V) and parameters obtained from the fitting of the

Concentration	$\mathbf{\Phi}_{\mathrm{V}}$	$ au_0$	n	К	R ²
17.5 mg mL ⁻¹	0.0133	19.79	0.460	7.96	0.9997
21.5 mg mL ⁻¹	0.0164	31.56	0.458	11.69	0.9991
25.5 mg mL ⁻¹	0.0194	43.35	0.450	19.16	0.9997
31.5 mg mL ⁻¹	0.0240	60.92	0.433	35.25	0.9998
40.0 mg mL ⁻¹	0.0306	91.50	0.421	39.75	0.9989
50.0 mg mL ⁻¹	0.0383	126.00	0.400	58.46	0.9992

experimental data with the Herschel-Bulkley model.

Fig. S3. CV curves at scan rates of 5, 10, 20, 30, 50 and 100 mV s⁻¹.

Fig. S4. Areal specific capacitances calculated from CV curves as a function of the scan rate.

Fig. S5. Mass specific capacitances from GCD curves as a function of the current density.

Fig. S6. Volumetric specific capacitances calculated from GCD curves as a function of the current density.

Fig. S7. Cycling performance and coulombic efficiency of the 3DHG-MSC at the current density of 8 mA cm⁻² for 10000 cycles.

Table S2. Comparison of the electrochemical performances of various graphene MSCs

System	Electrolyte	Capacitance	
3DHG ^a	H ₃ PO ₄ /PVA	111.1 mF cm ⁻² (10 mV s ⁻¹)	
(This work)		101.0 mF cm ⁻² (0.5 mA cm ⁻²)	
3D printed graphene MSCs with	H ₂ SO ₄ /PVA	74.31 mF cm ⁻² (5 mV s ⁻¹)	
interdigitated architecture		(8 layers)	
(Ref. S1)		7.37 F g ⁻¹ (0.1 A g ⁻¹)	
3D printed graphene SCs with sandwich	3M KOH aqueous	0.96 F cm ⁻³ (2.6 A cm ⁻³)	

structure (Ref. S2)	electrolyte	
Printed planar MSCs	H ₂ SO ₄ /PVA	19.8 mF cm ⁻² (4 layers)
(Ref. S3)		18.2 F cm ⁻³ (3 A cm ⁻³)
LPG ^b (Ref. S4)	H ₂ SO ₄ /PVA	36.4 mF cm ⁻² (10 mV s ⁻¹)
		37.9 mF cm ⁻² (0.6 mA cm ⁻²)
LEG ^c (Ref. S5)	H ₃ PO ₄ /PVA	13.0 mF cm ⁻² (10 mV s ⁻¹)
		15.4 mF cm ⁻² (0.1 mA cm ⁻²)
LIG ^d (Ref. S6)	H ₃ PO ₄ /PVA	$0.8 \text{ mF cm}^{-2} (10 \text{ mV s}^{-1})$

^a 3DHG is the electrode with interdigitated architecture obtained by 3D printing of the highly concentrated GO hydrogel

^b LPG is the electrode obtained by laser carving the porous graphene film

^cLEG is laser-carved graphene, followed by electrochemical activation

^dLIG is laser-induced graphene

Notes and references

- S1 W. Li, Y. Li, M. Su, B. An, J. Liu, D. Su, L. Li, F. Li and Y. Song, J. Mater. Chem. A, 2017, 5, 16281-16288.
- S2 C. Zhu, T. Liu, F. Qian, T. Y. Han, E. B. Duoss, J. D. Kuntz, C. M. Spadaccini, M. A.Worsley and Y. Li, *Nano Lett*, 2016, 16, 3448-3456.
- S3 G. Sun, J. An, C. K. Chua, H. Pang, J. Zhang and P. Chen, *Electrochem. Commun.*, 2015, 51, 33-36.
- S4 X. W. Yun, Z. Y. Xiong, L. Tu, L. Bai and X. G. Wang, *Carbon*, 2017, **125**, 308-317
- M. Wu, Y. Li, B. Yao, J. Chen, C. Li and G. Shi, J. Mater. Chem. A, 2016, 4, 16213 16218.
- S6 J. B. In, B. Hsia, J.-H. Yoo, S. Hyun, C. Carraro, R. Maboudian and C. P. Grigoropoulos, *Carbon*, 2015, **83**, 144-151.