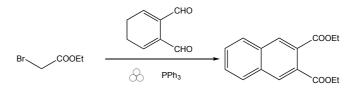
A solvent-free mechanochemical synthesis of polyaromatic hydrocarbon derivatives

Cong Wang, Malik Hill, James Mack

Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, Ohio 45221-0172, United states

Supporting Information

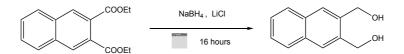
Table of contents


General information	S2
Experimental	S2
Optimization study	S5
Spectra	S8
Eco Scale Calculation	S29
Reference	S43

General information

All NMR spectra were recorded on a Bruker Avance 400 spectrometer. Deuterated NMR solvents were obtained from Cambridge Isotope Laboratories, Inc., and used without further purification. For high resolution MS data, sample was analyzed by using an Orbitrap Fusion Lumos Mass Spectrometer for high resolution data. GC-MS data was obtained from Agilent Technologies 7890B GC system and 5977A MSD. All chemicals were purchased from Acros Organics and used without further purification. Mechanochemistry was carried out in an 8000 M Spex Certiprep Mixer/Mill. And all the reactions were conducted at 18Hz. Reaction vials (Smartsnap grinding jar) were purchased from Form-Tech Scientific. Ball bearings were purchased from Small Parts incorporated. ~1g for one 1/4" stainless steel ball (S.S. ball). Flash column system (CombiFlash Rf+) was purchased from Teledyne ISCO.

Experimental


Naphthalene-2,3-dicarboxylic acid diethyl ester (CAS No. 50919-54-5)

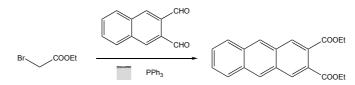
1.57g (6mmol, 1.2eq.) PPh₃ 2.17g (13mmol, 2.6eq.) ethyl bromoacetate 3.6g (26mmol, 5.2eq.) K_2CO_3 was put in a 30ml milling vial with 25 1/4" S.S. balls (total weight is 26.748g). The vial was placed in an 8000 M Spex Certiprep mixer/mill and the contents were ball milled for 4h. Wait until vial get cool down to room temperature. Open the vial carefully. 0.56g (5mmol, 1eq.) 1,2-Phthalic dicarboxaldehyde was put into the vial. The vial was placed in the mill and the contents were ball milled for 16h, 18Hz. After it is done, 3 portions ethyl acetate (10ml for each portion) was used to remove the mixture from the vial. Then, gravity filtration was used to remove the solid. Solution was collected and silica gel was added and solvent was removed under reduced pressure. The resulting mixture was purified by flash column chromatography on silica gel (EtOAc:Heptane=1:9). White to pale yellow solid was obtained. Yield 84%.

¹H NMR (CDCl₃, 400 MHz, ppm): δ 1.39 (t, 6H), 4.41 (q, 4H), 7.56-7.59 (m, 2H), 7.87-7.89 (m, 2H), 8.23 (s, 2H) 2H); ¹³C NMR (CDCl₃, 400 MHz, ppm): δ 14.19, 61.64, 128.45, 128.59, 128.84, 129.99, 133.33, 167.73; High Resolution MS (HRMS, ESI-MS). (M+H⁺), (C₁₆H₁₆O₄)H⁺, Calc: 273.1121; Found: 273.1120. Spectrum data match with previous report.¹ Melting point 54-55 °C (lit.² mp 54-55 °C).

(3-Hydroxymethyl-naphthalen-2-yl)-methanol (CAS No. 31554-15-1)

0.81g (3mmol, 1eq.) Naphthalene-2,3-dicarboxylic acid diethyl ester, 0.45g (12mmol, 4eq.) NaBH₄, 1.3g (30mmol, 10eq.) LiCl was put in a 15ml milling jar with 7 1/4" stainless balls. The vial was placed in an 8000 M Spex Certiprep mixer/mill and the contents were ball milled for 16h. The mixture was removed into a 250ml beaker and quenched with ~10% HCl (~75ml) and extracted with 3 portions of ethyl acetate (50ml for each portion). The resulting solution was dried with MgSO₄ and solvent was removed under reduced pressure and further purified by flash column chromatography on silica gel (EtOAc:Heptane=8:2). White solid was obtained. Yield 75%.

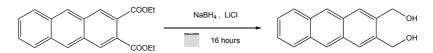
¹H NMR (Acetone-d₆, 400 MHz, ppm): δ 4.87 (d, 4H), 7.47-7.49 (m, 2H), 7.87-7.89 (m, 2H), 7.91 (s, 2H); ¹³C NMR (Acetone-d₆, 400 MHz, ppm): δ 63.05, 126.59, 127.19, 128.34, 133.77, 139.13; HRMS. (M+Na⁺), (C₁₂H₁₂O₂)Na⁺, Calc: 211.0730; Found: 211.0731. Spectrum data match with previous report.¹ Melting point 157-162 °C (lit.³ mp 155-160 °C).


Naphthalene-2,3-dicarbaldehyde (CAS No. 7149-49-7)

0.33g (1.8mmol, 1eq.) (3-Hydroxymethyl-naphthalen-2-yl)-methanol, 1.5g (5.4mmol, 3eq.) IBX (2-lodoxybenzoic acid, prepared and recycled in our lab by following the previously reported protocol⁴) was put in a 15ml milling jar with 3 1/4" stainless balls. The vial was placed in an 8000 M Spex Certiprep mixer/mill and the contents were ball milled for 8h. EtOAc (3 portions, 5ml for each portion) was added into the vial. Gravity filtration was used to remove the solid and solution was collected and further purified by flash column chromatography on silica gel (EtOAc:Heptane=4:6). White solid was obtained. Yield 81%.

¹H NMR (CDCl₃, 400 MHz, ppm): δ 7.72-7.74 (m, 2H), 8.02-8.05 (m, 2H), 8.42 (s, 2H), 10.61 (s, 2H). ¹³C NMR (CDCl₃, 400 MHz,ppm): δ 129.66, 130.03, 132.84, 134.44, 134.49, 192.52. Spectrum data match with previous report.¹ GC-MS, m/z, 184, [M⁺]. Melting point 128-129°C (lit.⁵ mp 112-115°C).

Anthracene-2,3-dicarboxylic acid diethyl ester (CAS No. 84041-04-3)



0.78g (3mmol, 1.2eq.) PPh₃ 1.1g (6.5mmol, 2.6eq.) ethyl bromoacetate 1.8g (13mmol, 5.2eq.)

K₂CO₃ was put in a 30ml milling jar with 25 1/4" stainless balls. The vial was placed in an 8000 M Spex Certiprep mixer/mill and the contents were ball milled for 4h. Wait until vial get cool down to room temperature. Open the vial carefully. 0.46g (2.5mmol, 1eq.) Naphthalene-2,3-dicarbaldehyde was put into the vial. The vial was placed in the mill and the contents were ball milled for 16h. After it is done, ethyl acetate (3 portions, 10ml for each portion) was used to remove the mixture from the vial. Then gravity filtration was used to remove the solid. Solution was collected and Si gel was added and solvent was removed under reduced pressure. The resulting mixture was purified by flash column chromatography on silica gel (Acetone:Heptane=1:9). Bright yellow solid was obtained. Yield 62%.

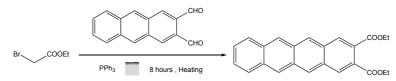
¹H NMR (CDCl₃, 400 MHz, ppm): δ 1.43 (t, 6H), 4.44 (q, 4H), 7.55-7.57 (m,2H), 8.04-8.06 (m, 2H), 8.44 (s, 2H), 8.52 (s, 2H). ¹³C NMR (CDCl₃, 400 MHz,ppm): δ 14.25, 61.66, 126.79, 127.94, 128.00, 138.42, 130.49, 131.14, 133.06, 167.78. Spectrum data match with previous report.¹ GC-MS, m/z, 322, [M⁺]. Melting point 86-87 °C (lit.² mp 99-100 °C).

(3-Hydroxymethyl-anthracen-2-yl)-methanol (CAS No. 1134642-63-9)

0.322g (1mmol, 1eq.) Anthracene-2,3-dicarboxylic acid diethyl ester, 0.15g (4mmol, 4eq.) NaBH₄, 0.424g (10mmol, 10eq.) LiCl was put in a 15ml milling jar with 7 1/4" stainless balls. The vial was placed in an 8000 M Spex Certiprep mixer/mill and the contents were ball milled for 16h. The mixture was removed into a 250ml beaker and quenched with ~10% HCl (~75ml). Vacuum filtration was used and the solid was washed with acetone 3 times (5ml each time). Keep the vacuum on until it is dry. Gray solid was obtained. Yield 55%.

¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 4.74-4.75 (d, 4H), 5.31-5.33 (t, 2H), 7.48-7.50 (m, 2H), 8.04 (s, 2H), 8.06-8.08 (m, 2H), 8.53 (s, 2H) ¹³C NMR (DMSO-d₆, 400 MHz,ppm): δ 60.68, 124.56, 125.14, 125.29, 127.90, 130.48, 131.07, 138.16. Spectrum data match with previous report.¹ HRMS, (M+Na⁺), (C₁₆H₁₄O₂)Na⁺ Calc: 261.0886; Found: 261.0887. Melting point 234-245°C.

Anhracene-2,3-dicarbaldehyde (CAS No.76197-35-8)

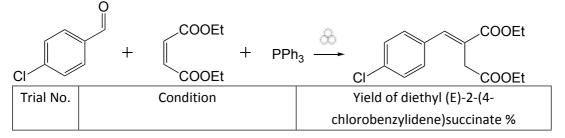


0.23g (1mmol, 1eq.) (3-Hydroxymethyl-anthracen-2-yl)-methanol, 0.84g (3mmol, 3eq.) IBX and ~0.5g silica gel was put in a 15ml milling jar with 3 1/4" stainless balls. The vial was placed in an 8000 M Spex Certiprep mixer/mill and the contents were ball milled for 8h. Acetone (3 portions, 20ml for each portion) was used to remove the mixture form vial. Then gravity

filtration was used to remove solid. Filtrate was collected and dried under reduced pressure. The solid was heated in sublime apparatus at 100°C. The dark orange solid left on the bottom in sublime apparatus was collected. Yield 81%.

¹H NMR (CDCl₃,400 MHz, ppm): δ 7.64-7.66 (m, 2H), 8.10-8.12 (m, 2H), 8.63 (s, 2H), 8.65 (s, 2H), 10.66 (s, 2H). ¹³C NMR (CDCl₃, 400 MHz,ppm): δ 127.79, 128.67, 129.58, 130.93, 132.04, 133.82, 136.48, 192.48. GCMS Spectrum data match with previous report.¹ GC-MS, m/z, 234, [M⁺]. Melting point 197-201°C (lit.⁶ mp 217°C).

Naphthacene-2,3-dicarboxylic acid diethyl ester



0.157g (0.6mmol, 1.2eq.) PPh₃ 0.212g (1.3mmol, 2.6eq.) ethyl bromoacetate 0.36g (2.6mmol, 5.2eq.)K₂CO₃ was put in a 15ml milling jar with 10 1/4" stainless balls. The vial was placed in an 8000 M Spex Certiprep mixer/mill and the contents were ball milled for 4h. Wait until vial get cool down to room temperature. Open the vial carefully. 0.117g (0.5mmol, 1eq.) Anhracene-2,3-dicarbaldehyde was put into the vial. The vial was placed in the mill with the heating apparatus that reported previously in our group⁷ and the contents were ball milled and heated at 80°C for 8h. After it is done, ethyl acetate (3 portions, 10ml for each portion) was used to remove the mixture from the vial. Gravity filtration was used to remove the solid. Solution was collected and silica gel was added and solvent was removed under reduced pressure. The resulting mixture was purified by flash column chromatography on silica gel (Acetone:Heptane=1:9). Bright orange solid was obtained. Yield 20%.

¹H NMR (CDCl₃, 400 MHz, ppm): δ 1.44 (t, *J* = 7.1 Hz, 6H), 4.44 (q, *J* = 7.2 Hz, 4H), 7.45-7.48 (m, 2H), 8.02-8.04 (m, 2H), 8.43 (s, 2H), 8.71 (s, 2H), 8.75 (s,2H). ¹³C NMR (CDCl₃, 400 MHz,ppm): δ 14.26, 61.62, 126.03, 126.99, 127.66, 128.34, 128.56, 129.86, 131.02, 131.68, 132.27, 167.72. Spectrum data match with previous report.¹ HRMS. (M+Na⁺), (C₂₄H₂₀O₄)Na⁺, Calc: 395.12538; Found: 395.12541. Melting point 183-186 °C.

Optimization study

Control reaction was conducted to find the condition for wittig reaction. Different Stainless steel (S.S.) ball and time length were used.

1	1 h, one 3/16-inch SS ball	4
2	16 h, one 3/16-inch SS ball	21
3	1 h, three 3/16-inch SS ball	7
4	16 h, one 3/16-inch SS ball, LiBr	7
5	16 h, nine 3/16-inch SS ball, LiBr	12

Different nucleophilic reagent was used to see if it works better with maleic anhydride. (:Nu = nucleophilic reagent)

	O + (COOEt + (:Nu 🖳 🚺	COOEt
	COOEt	CI	COOEt
Trial No.	Condition	:Nu	Result
1	16 h, one 3/16-inch SS bal	Tricyclohexylphosphine	No reaction
2	16 h, one 3/16-inch SS bal	DABCO	No reaction
3	16 h, one 3/16-inch SS bal	NaH	inseparable
			multiple product

Optimization for wittig reaction.

3 4

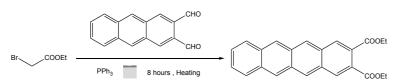
PPh ₃ + 1eq.	BrCOOEt 2eq.	K_2CO_3 4 hours		COOEt COOEt
Trial No.		Condition		Yield %
1	one 3/16-inch	S.S. balls, 4hours	, 15ml milling vial	19
2	one 1/4-inch	S.S. balls, 4hours,	15ml milling vial	29

51

84

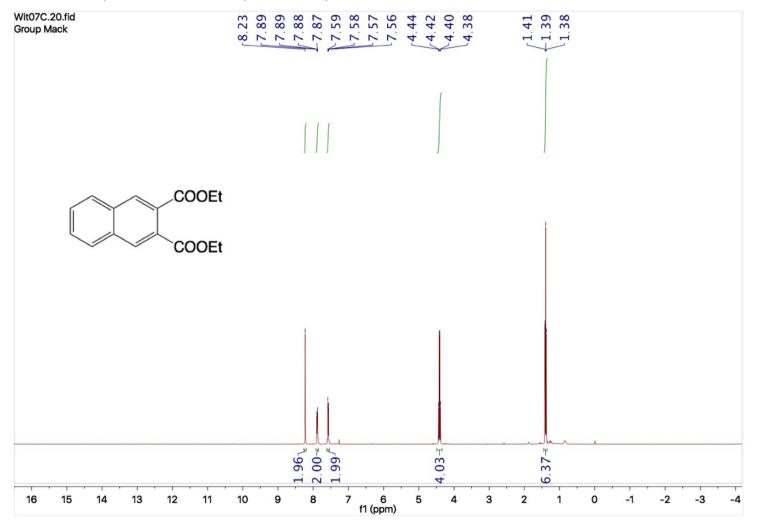
Optimization for IBX oxidation generating Anhracene-2,3-dicarbaldehyde

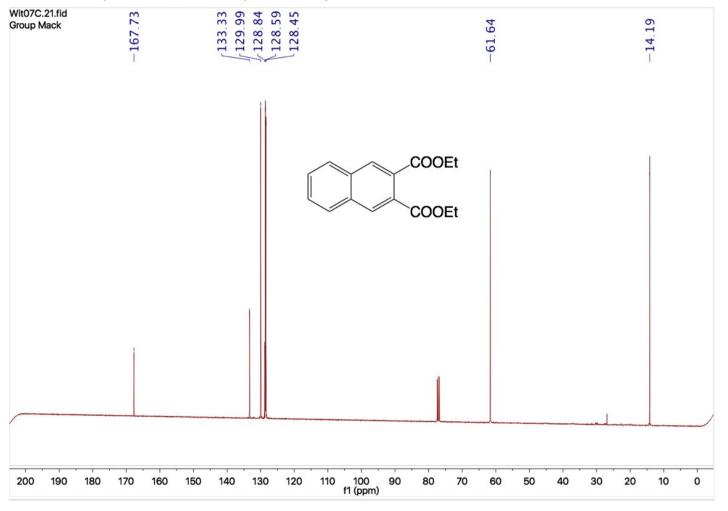
Fifteen 3/16-inch S.S. balls, 4hours, 15ml milling vial

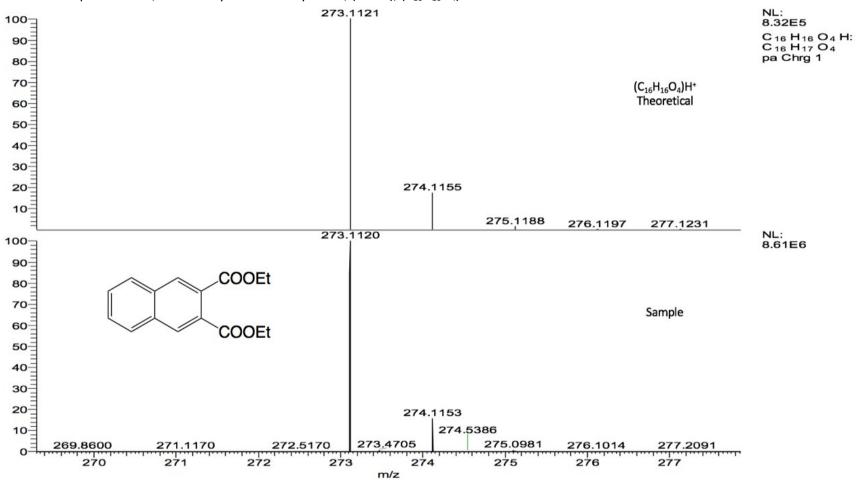

25 1/4-inch S.S. balls, 16hours, 30ml milling vial

Trial No.	Condition	Yield %
1	3eq. IBX	8
2	6eq. IBX	11
3	3eq. IBX , 1ml EtOAc	8
4	3eq. IBX , Heating(~100 $^\circ\!\mathrm{C}$)	10

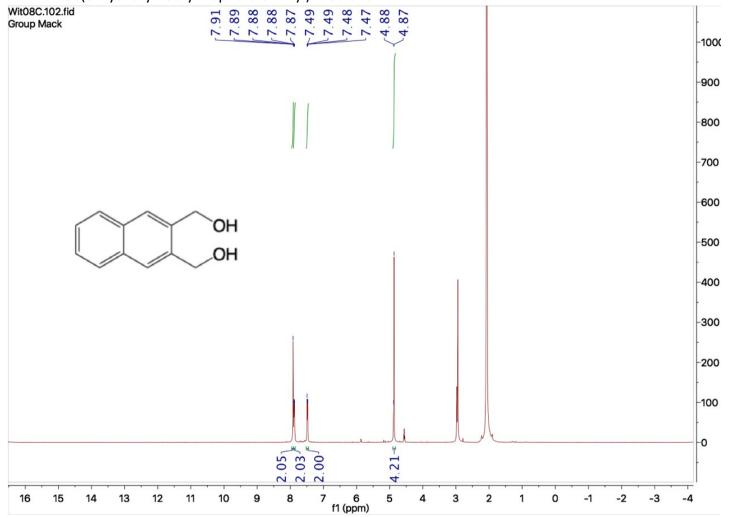
5	2.6eq. Dess-Martin reagent	13
6	3eq. IBX , 0.5g Silica gel	81

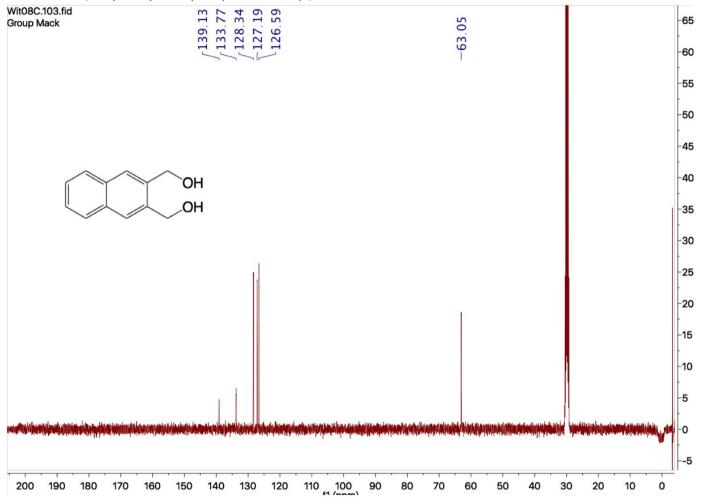

Optimization for wittig reaction generating Naphthacene-2,3-dicarboxylic acid diethyl ester

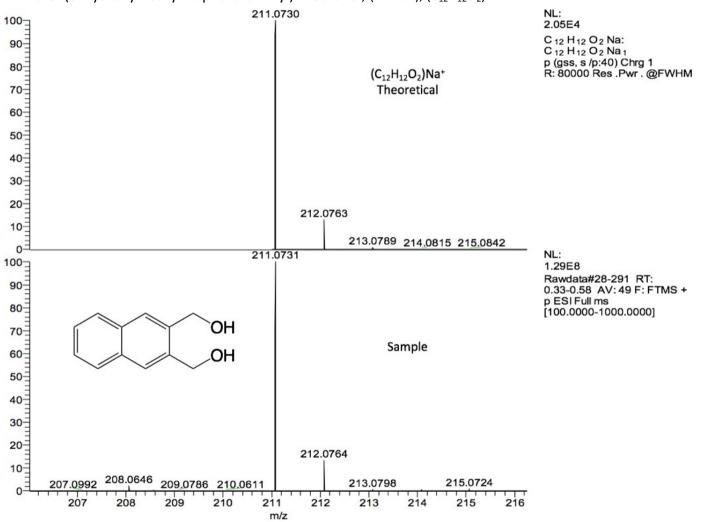

Trial No.	Condition	Yield
1	25 1/4" S.S. balls, 16h	13%
2	25 1/4" S.S. balls, 16h, Ball mill with cooling fan	0%
3	25 1/4" S.S. balls, 16h, ~0.5g dry silica gel	8%
4	25 1/4" S.S. balls, 8h, heating ~80 $^\circ\!\mathrm{C}$	20%


No optimization for other steps.

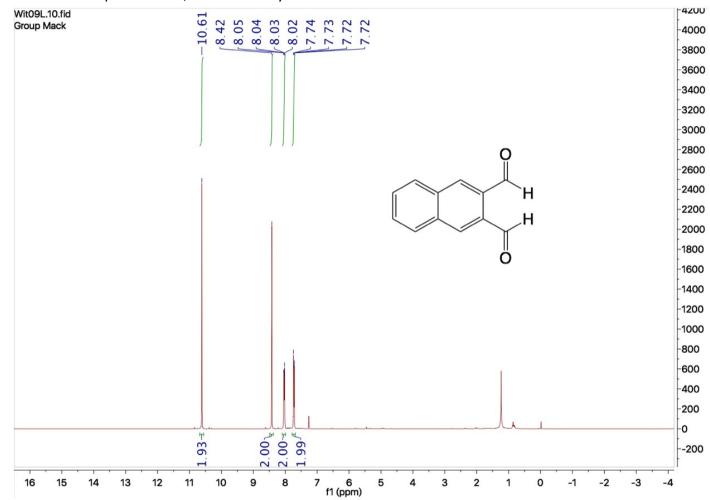
¹H-NMR of Naphthalene-2,3-dicarboxylic acid diethyl ester


¹³C-NMR of Naphthalene-2,3-dicarboxylic acid diethyl ester

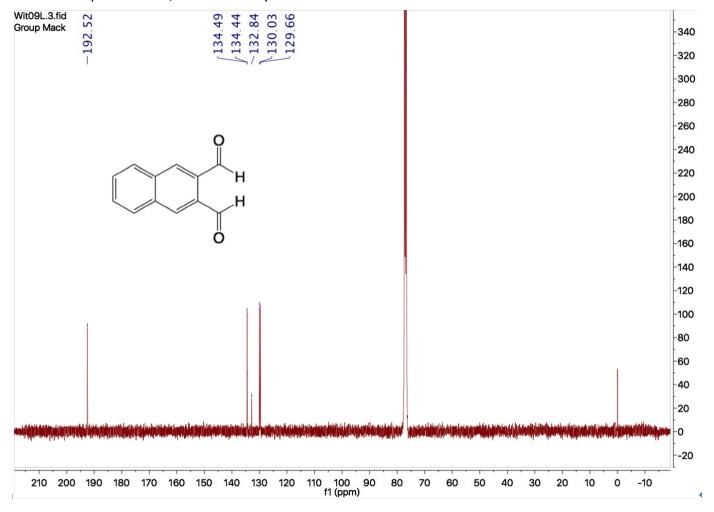


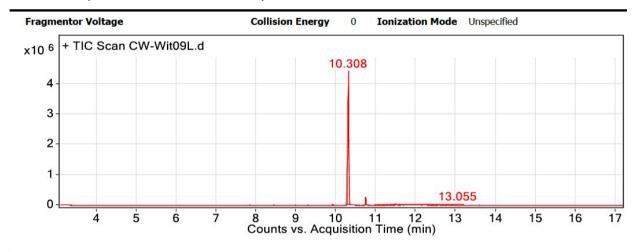

HRMS of Naphthalene-2,3-dicarboxylic acid diethyl ester, $(M+H^+)$, $(C_{16}H_{16}O_4)H^+$

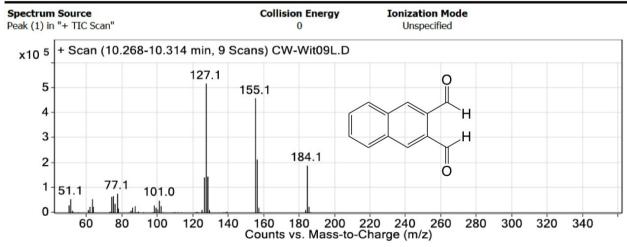
¹H-NMR of (3-Hydroxymethyl-naphthalen-2-yl)-methanol



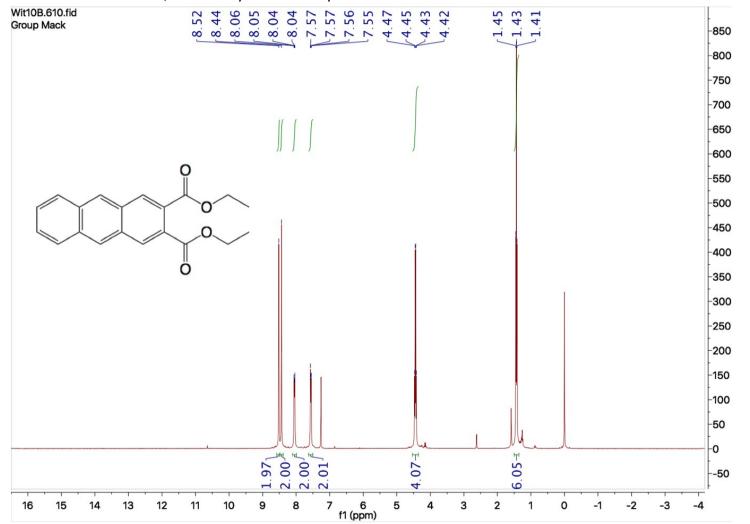
¹³C-NMR of (3-Hydroxymethyl-naphthalen-2-yl)-methanol

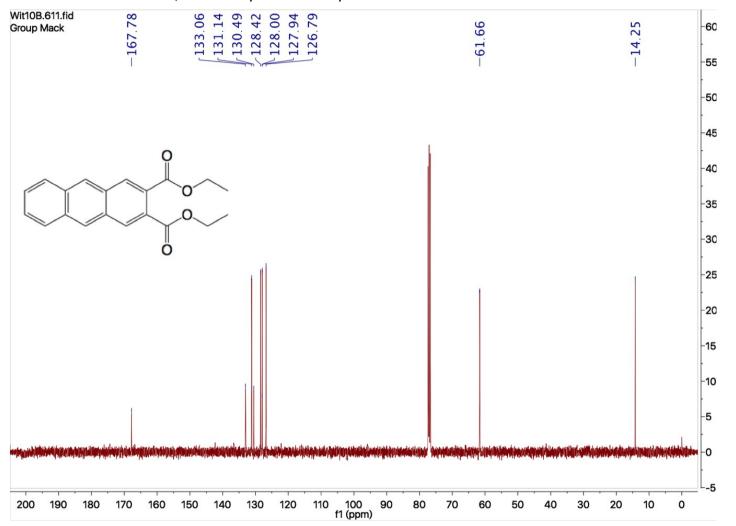


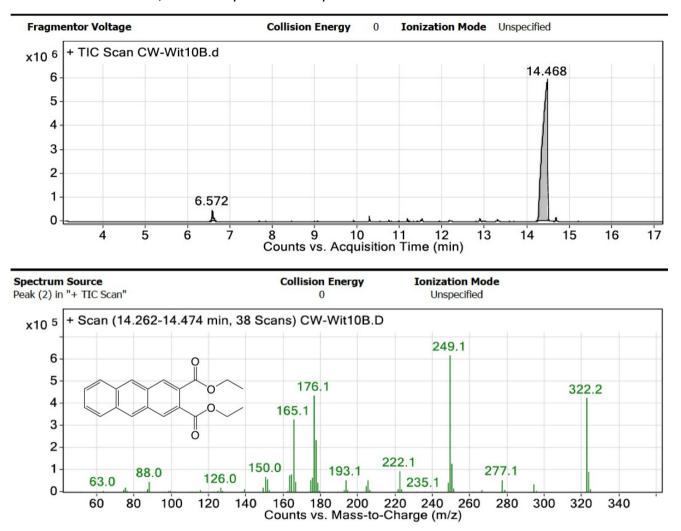

HRMS of (3-Hydroxymethyl-naphthalen-2-yl)-methanol, (M+Na⁺), (C₁₂H₁₂O₂)Na⁺

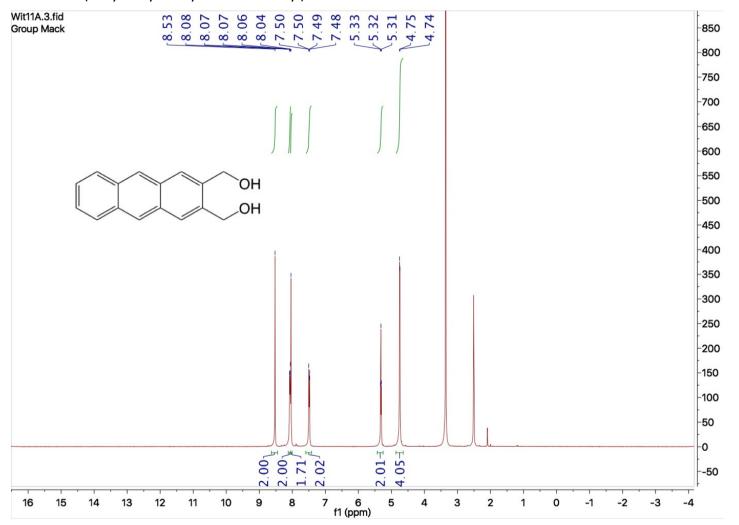

¹H-NMR of Naphthalene-2,3-dicarbaldehyde

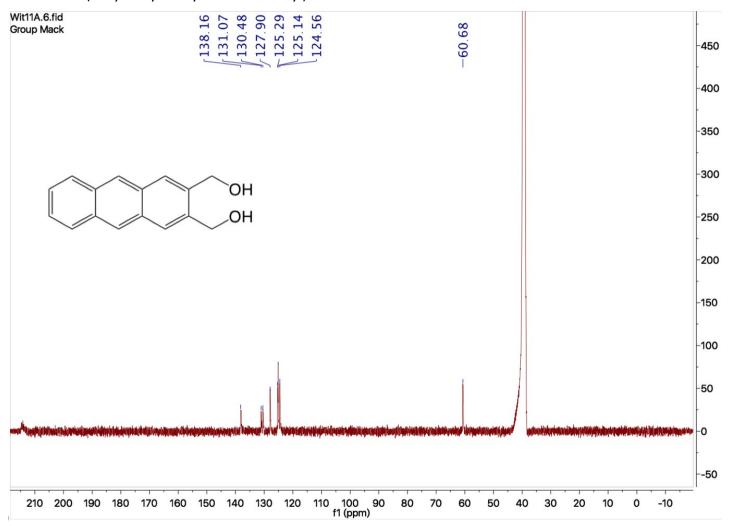
¹³C-NMR Naphthalene-2,3-dicarbaldehyde

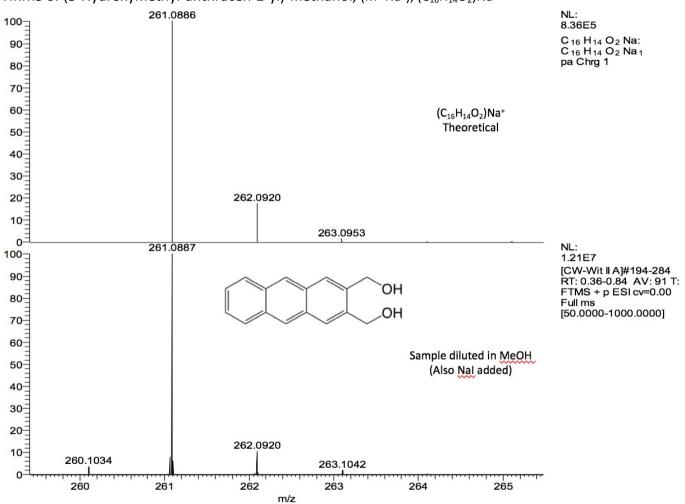



GCMS of Naphthalene-2,3-dicarbaldehyde

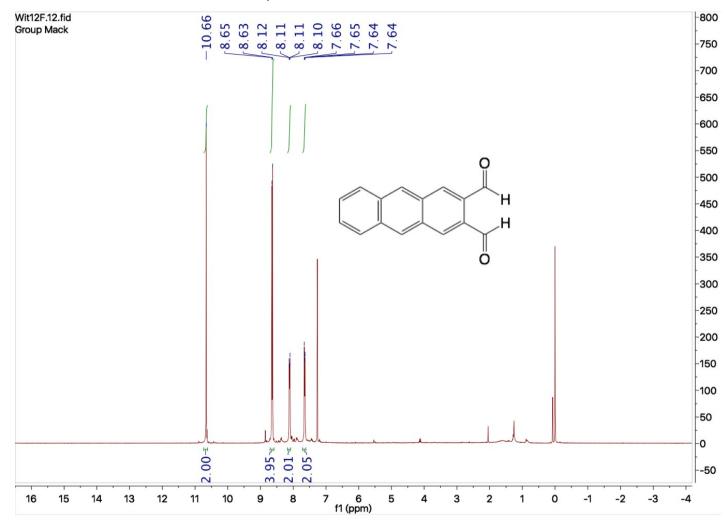

¹H-NMR of Anthracene-2,3-dicarboxylic acid diethyl ester


¹³C-NMR of Anthracene-2,3-dicarboxylic acid diethyl ester

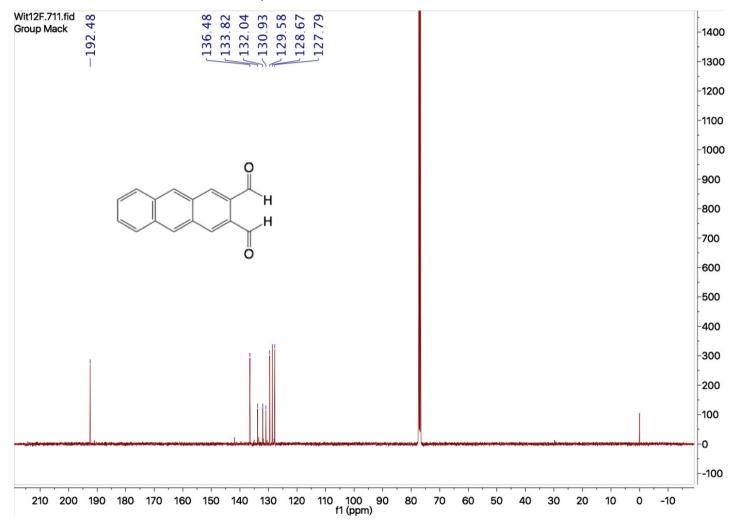


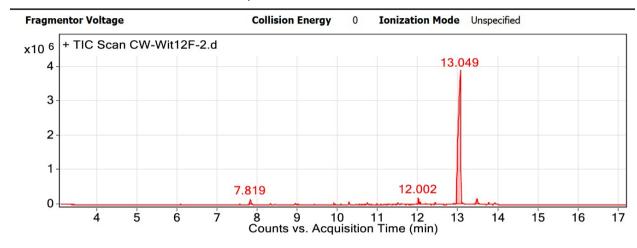


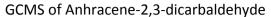
¹H-NMR of (3-Hydroxymethyl-anthracen-2-yl)-methanol

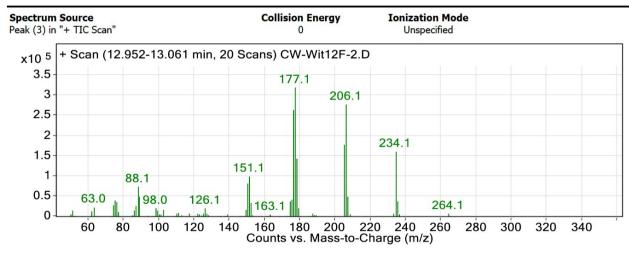


¹³C-NMR of (3-Hydroxymethyl-anthracen-2-yl)-methanol

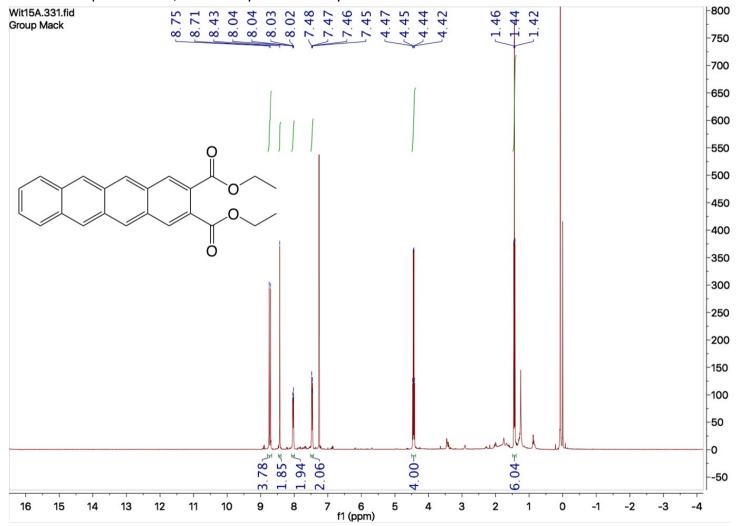


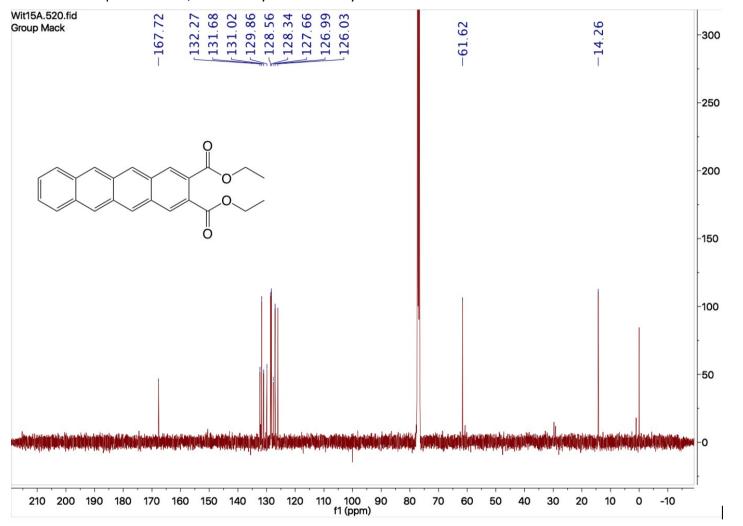

HRMS of (3-Hydroxymethyl-anthracen-2-yl)-methanol, (M+Na⁺), (C₁₆H₁₄O₂)Na⁺

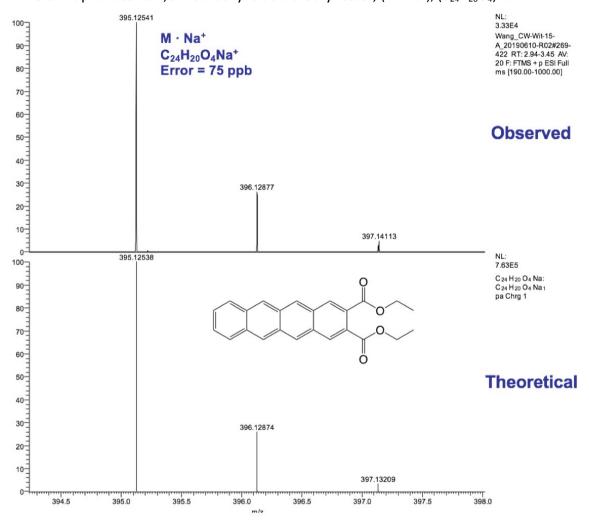



¹H-NMR of Anhracene-2,3-dicarbaldehyde

¹³C-NMR of Anhracene-2,3-dicarbaldehyde







¹H-NMR of Naphthacene-2,3-dicarboxylic acid diethyl ester

¹³C-NMR of Naphthacene-2,3-dicarboxylic acid diethyl ester

HRMS of Naphthacene-2,3-dicarboxylic acid diethyl ester, (M+Na⁺), (C₂₄H₂₀O₄)Na⁺

Eco-Scale Calculation

Eco-Scale is a standard to evaluate the safety and environmental impact.⁸ We did this calculation to compare our method with previous research.¹

Product	Eco-scale score		Price for every 10 mmol product	
	Previous research published by Lin et. al. ^[1]	Our process	Previous research published by Lin et. al. ^[1]	Our process
COOEt	43	64	\$52.7	\$19.3
ОНОН	58	61.5	\$129.3	\$30.1
СНО	52.5	77.5	\$210.3	\$45.2
COOEt	51	61	\$281.4	\$77.1

ОН	58.5	67.5	\$441.6	\$146.4
СНО	51.5	82.5	\$601.1	\$188.4
COOEt	35.5	37	\$1150.48	\$955.7

From this form, we can see that, for every step, our process is more environment friendly based on Eco-scale point. And for every step to get same amount of product, our price is cheaper.

	Previous research ¹		For our process	
Parameter	Penalty	Percentag	Penalty	Percentag
	points	e in total	points	e in total
		penalty		penalty
		points(%)		points(%)
Yield	73	20.9	121	48
Price of reaction components	70	20	29	11.5
(to obtain 10 mmol of end				
product)				
Safety	110	31.4	40	15.9
Technical set-up	14	4	0	0
Temperature/time	32	9.1	3	1.2
Workup and purification	51	14.6	59	23.4
Total penalty points	350		252	

For the total seven steps to get Naphthacene-2,3-dicarboxylic acid diethyl ester

For the previous research published by Lin et. al.¹, wittig reaction generating Naphthalene-2,3-dicarboxylic acid diethyl ester

Nupritinaiene 2,5 alearboxy	CHO		
PEt ₃ +	atmosphere CHO	$\begin{array}{c} \text{DBU} \\ \hline 0.1 \text{ eq} \end{array}$	COOEt
1.4 eq 1.3 eq			
Parameter	Item	Penalty	Note
		points	
Yield	86%	7	
Price of reaction	1,2-Phthalic	3	
components	dicarboxaldehyde		
(to obtain 10 mmol of			
end product)			
	Triethylphosphine	3	
	Diethyl maleate	0	
	1,8-	0	
	Diazabicyclo[5.4.0]undec-7-		
	ene 2,3,4,6,7,8,9,10-		
	Octahydropyrimido[1,2-		
	a]azepine (DBU)		
	Dichloromethane	0	
	Water	0	

Safety	1,2-Phthalic	10	dangerous for
	dicarboxaldehyde		evironment /
			toxic
	Triethylphosphine	5	highly
			flammable
	Diethyl maleate	0	
	1,8-	10	dangerous for
	Diazabicyclo[5.4.0]undec-7-		evironment /
	ene 2,3,4,6,7,8,9,10-		toxic
	Octahydropyrimido[1,2-		
	a]azepine (DBU)		
	Dichloromethane	0	
	Water	0	
Technical set-up	Instruments for controlled	1	syringe used,
	addition of chemicals		drop wisely
	(Inert) gas atmosphere	1	
Temperature/time	Cooling to 0°C	4	
Workup and purification	Liquid-liquid extraction	3	
	Classical chromatography	10	
Eco-scale point	100-57=43		

For the previous research published by Lin et. al.¹, reduction generating (3-Hydroxymethyl-naphthalen-2-yl)-methanol

nydroxymethyl-haphthalen-z-yl)-methanol				
COOEt 5 eq. DIBAL per ester , toluene				
COOEt	-50°C , N_2 atomsphere	re	ОН	
Parameter	Item	Penalty	Note	
		points		
Yield	86%	7		
Price of reaction	Naphthalene-2,3-	5	Lab-made starting	
components	dicarboxylic acid		material, \$61.3	
(to obtain 10 mmol of end	diethyl ester		Based on previous	
product)			calculation	
	DIBAL	5		
Safety	Naphthalene-2,3-	5	Lab-made starting	
	dicarboxylic acid		material, dangerous	
	diethyl ester		for evironment.	
	DIBAL	10	Highly flammable,	
		1		

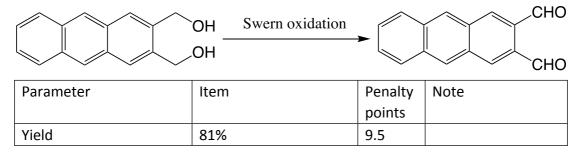
Toxic

Technical set-up	Instruments for	1	syringe used, drop
	controlled addition		wisely
	of chemicals		
	(Inert) gas	1	
	atmosphere		
Temperature/time	Cooling, < 0°C	5	-50°C used
Workup and purification	Liquid-liquid	3	
	extraction		
Eco-scale point	100-42=58		

For the previous research published by Lin et. al.¹, oxidation generating Naphthalene-2,3-dicarbaldehyde

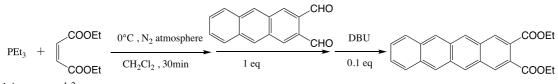
	- Swern oxidation		СНО
		→ [
	•		СНО
Parameter	ltem	Penalty	Note
		points	
Yield	83%	8.5	
Price of reaction	2,3-	5	Lab-made starting
components	Bis(hydroxymethyl)nap		material, \$114.8
(to obtain 10 mmol of	hthalene		Based on previous
end product)			calculation
	Oxalyl chloride	3	
	DMSO	3	
	Triethylamine	3	
Safety	2,3-	N/A	Lab-made starting
	Bis(hydroxymethyl)nap		material, safety
	hthalene		information not
			found
	Oxalyl chloride	5	toxic
	DMSO	0	
	Triethylamine	10	Highly flammable,
			toxic
Technical set-up	Instruments for	1	syringe used, drop
	controlled addition of		wisely
	chemicals		
	(Inert) gas atmosphere	1	
Temperature/time	Cooling, < 0°C	5	-80°C used
Workup and purification	Liquid-liquid extraction	3	
Eco-scale point	100-44.5=52.5		

For the previous research published by Lin et. al.¹, wittig reaction generating Anthracene-2,3-dicarboxylic acid diethyl ester


Antinacene-2,3-uicarboxy	CHO		
PEt ₃ +		DBU	COOEt
1.4 eq 1.3 eq			COOL
Parameter	Item	Penalty	Note
		points	
Yield	86%	7	
Price of reaction	2,3-	5	Lab-made
components	Naphthalenedicarboxalde		starting
(to obtain 10 mmol of	hyde		material, \$244.5
end product)			Based on
			previous
			calculation
	Triethylphosphine	3	
	Diethyl maleate	0	
	1,8-	0	
	Diazabicyclo[5.4.0]undec-		
	7-ene 2,3,4,6,7,8,9,10-		
	Octahydropyrimido[1,2-		
	a]azepine (DBU)		
	Dichloromethane	0	
	Water	0	
Safety	2,3-	0	
	Naphthalenedicarboxalde hyde		
	Triethylphosphine	5	highly flammable
	Diethyl maleate	0	
	1,8-	10	dangerous for
	Diazabicyclo[5.4.0]undec-		evironment /
	7-ene 2,3,4,6,7,8,9,10-		toxic
	Octahydropyrimido[1,2-		
	a]azepine (DBU)		
	Dichloromethane	0	
	Water	0	
Technical set-up	Instruments for controlled addition of chemicals	1	syringe used, dropwisely
	(Inert) gas atmosphere	1	1 /
Temperature/time	Cooling to 0°C	4	
Workup and	Liquid-liquid extraction	3	
		5	

purification			
	Classical chromatography	10	
Eco-scale point	100-49=51		

For the previous research published by Lin et. al.¹, reduction generating (3-Hydroxymethyl-anthracen-2-yl)-methanol

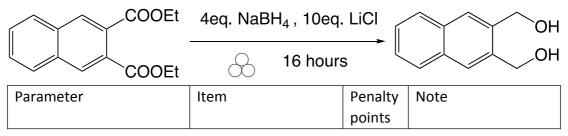

COOEt	t 5 eq. DIBAL per ester , toluene		
COOEt	-50°C, N ₂ atomsphere		ОН
Parameter	ltem	Penalty	Note
		points	
Yield	77%	11.5	
Price of reaction	Anthracene-2,3-	5	Lab-made starting
components	dicarboxylic acid		material, \$303.6
(to obtain 10 mmol of end	diethyl ester		Based on previous
product)			calculation
	DIBAL	5	
Safety	Anthracene-2,3-	N/A	Lab-made starting
	dicarboxylic acid		material, safety
	diethyl ester		information not
			found
	DIBAL	10	Highly flammable,
			Toxic
Technical set-up	Instruments for	1	syringe used,
	controlled addition		dropwisely
	of chemicals		
	(Inert) gas	1	
	atmosphere		
Temperature/time	Cooling, < 0°C	5	-50°C used
Workup and purification	Liquid-liquid	3	
	extraction		
Eco-scale point	100-41.5=58.5		

For the previous research published by Lin et. al.¹, oxidation generating Anhracene-2,3-dicarbaldehyde

Price of reaction components (to obtain 10 mmol of end product)	2,3- Bis(hydroxymethyl)nap hthalene	5	Lab-made starting material, \$545.2 Based on previous calculation
	Oxalyl chloride	3	
	DMSO	3	
	Triethylamine	3	
Safety	2,3- Bis(hydroxymethyl)nap hthalene	N/A	Lab-made starting material, safety information not found
	Oxalyl chloride	5	toxic
	DMSO	0	
	Triethylamine	10	Highly flammable, toxic
Technical set-up	Instruments for controlled addition of chemicals (Inert) gas atmosphere	1	syringe used, drop wisely
Temperature/time	Cooling, < 0°C	5	-80°C used
Workup and purification	Liquid-liquid extraction	3	
Eco-scale point	100-48.5=51.5		

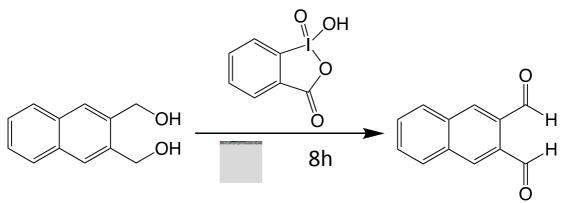
For the previous research published by Lin et. al.¹, wittig reaction generating Naphthacene-2,3-dicarboxylic acid diethyl ester

1.4 eq 1.3 eq


Parameter	Item	Penalty points	Note
Yield	55%	22.5	
Price of reaction components (to obtain 10 mmol of end product)	Anthracene-2,3- dicarbaldehyde	5	Lab-made starting material, \$1092.9 Based on previous calculation
	Triethylphosphine	3	
	Diethyl maleate	0	
	1,8- Diazabicyclo[5.4.0]undec -7-ene 2,3,4,6,7,8,9,10- Octahydropyrimido[1,2-	0	

	a]azepine (DBU)		
	Dichloromethane	0	
	Water	0	
Safety	Anthracene-2,3- dicarbaldehyde	N/A	Lab-made starting material, safety information not found
	Triethylphosphine	5	highly flammable
	Diethyl maleate	0	
	1,8- Diazabicyclo[5.4.0]undec -7-ene 2,3,4,6,7,8,9,10- Octahydropyrimido[1,2- a]azepine (DBU)	10	dangerous for evironment / toxic
	Dichloromethane	0	
	Water	0	
Technical set-up	Instruments for controlled addition of chemicals	1	syringe used, dropwisely
	(Inert) gas atmosphere	1	
Temperature/time	Cooling to 0°C	4	
Workup and purification	Liquid-liquid extraction	3	
	Classical chromatography	10	
Eco-scale point	100-64.5=35.5		

For our process, wittig reaction generating Naphthalene-2,3-dicarboxylic acid diethyl ester

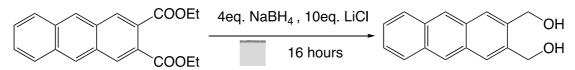

PPh ₃ + Br COO		16 hours	COOEt
1.2 eq. 2.6 eq.	25 1/4" SS Ball	Ť	COOEt 🏏
Parameter	Item	Penalty points	Note
Yield	84%	8	
Price of reaction components (to obtain 10 mmol of end product)	1,2-Phthalic dicarboxaldehyde	3	
	Triphnyl phosphine	0	
	Ethyl bromoacetate	0	
	Potassium carbonate	0	
Safety	1,2-Phthalic dicarboxaldehyde	10	dangerous for evironment / toxic
	Triphnyl phosphine	0	
	Ethyl bromoacetate	5	toxic
	Potassium carbonate	0	
Technical set-up	Common setup	0	
Temperature/time	Room temperature, < 24 h	0	
Workup and purification	Simple filtration	0	
	Classical chromatography	10	
Eco-scale point	100-36=64		

For our process, Reduction generating (3-Hydroxymethyl-naphthalen-2-yl)-methanol

Yield	75%	12.5	
Price of reaction	Naphthalene-2,3-	3	Lab-made starting
components	dicarboxylic acid		material, \$25.7
(to obtain 10 mmol of end	diethyl ester		Based on previous
product)			calculation
	Sodium borohydride	0	
	Lithium chloride	0	
Safety	Naphthalene-2,3-	5	Lab-made starting
	dicarboxylic acid		material, dangerous
	diethyl ester		for evironment.
	Sodium borohydride	5	Toxic
	Lithium chloride	0	
Technical set-up	Common setup	0	
Temperature/time	Room temperature,	0	
	< 24 h		
Workup and purification	Liquid-liquid	3	
	extraction		
	Classical	10	
	chromatography		
Eco-scale point	100-38.5=61.5		

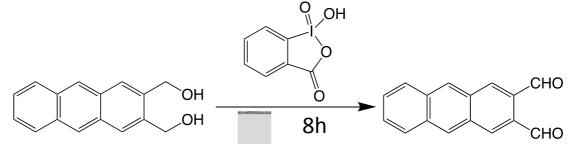
For our process, Oxidation generating Naphthalene-2,3-dicarbaldehyde

Parame	ter		ltem	Penalty	Note
				points	
Yield			81%	9.5	
Price	of	reaction	2,3-	3	Lab-made starting
compor	nents		Bis(hydroxymethyl)nap		material, \$37.5
(to obt	ain 10	mmol of	hthalene		Based on previous
end pro	duct)				calculation

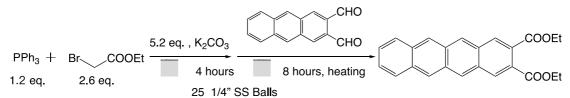

	IBX	0	Lab-made starting material, \$7.7 based on preparation method
Safety	2,3- Bis(hydroxymethyl)nap hthalene	N/A	Lab-made starting material, safety information not found
	IBX	0	
Technical set-up	Common setup	0	
Temperature/time	Room temperature, < 24 h	0	
Workup and purification	Classical chromatography	10	
Eco-scale point	100-22.5=77.5		

For our process, Wittig reaction generating Anthracene-2,3-dicarboxylic acid diethyl ester

		_CHO	
PPh ₃ + Br COOEt 1.2 eq. 2.6 eq.	5.2 eq. , K ₂ CO ₃ 4 hours 25 1/4" SS Balls	hours	COOEt
Parameter	Item	Penalty points	Note
Yield	62%	19	
Price of reaction components (to obtain 10 mmol of end product)	2,3- Naphthalenedicarboxal dehyde	5	Lab-made starting material, \$72.9 Based on previous calculation
	Triphnyl phosphine	0	
	Ethyl bromoacetate	0	
	Potassium carbonate	0	
Safety	2,3- Naphthalenedicarboxal dehyde	0	
	Triphnyl phosphine	0	
	Ethyl bromoacetate	5	toxic
	Potassium carbonate	0	


Technical set-up	Common setup	0	
Temperature/time	Room temperature, <	0	
	24 h		
Workup and	Simple filtration	0	
purification			
	Classical	10	
	chromatography		
Eco-scale point	100-39=61		

For our process, Reduction generating (3-Hydroxymethyl-anthracen-2-yl)-methanol


Parameter	ltem	Penalty	Note
		points	
Yield	55%	22.5	
Price of reaction	Anthracene-2,3-	5	Lab-made starting
components	dicarboxylic acid		material, \$140.2
(to obtain 10 mmol of end	diethyl ester		Based on previous
product)			calculation
	Sodium borohydride	0	
	Lithium chloride	0	
Safety	Anthracene-2,3-	N/A	Lab-made starting
	dicarboxylic acid		material, safety
	diethyl ester		information not
			found
	Sodium borohydride	5	Тохіс
	Lithium chloride	0	
Technical set-up	Common setup	0	
Temperature/time	Room temperature,	0	
	< 24 h		
Workup and purification	Simple filtration	0	
Eco-scale point	100-41.5=67.5		

For our process, Oxidation generating Anhracene-2,3-dicarbaldehyde

Parameter	Item	Penalty	Note
		points	
Yield	81%	9.5	
Price of reaction components (to obtain 10 mmol of end product)	2,3- Bis(hydroxymethyl)nap hthalene	5	Lab-made starting material, \$180.7 Based on previous calculation
	IBX	0	Lab-made starting material, \$7.7 based on preparation method
Safety	2,3- Bis(hydroxymethyl)nap hthalene	N/A	Lab-made starting material, safety information not found
	IBX	0	
Technical set-up	Common setup	0	
Temperature/time	Room temperature, < 24 h	0	
Workup and purification	Simple filtration	0	
	Sublimation	3	
Eco-scale point	100-17.5=82.5		

For our process, wittig reaction generating Naphthacene-2,3-dicarboxylic acid diethyl ester

Parameter	Item	Penalty points	Note
Yield	20%	40	
Price of reaction components (to obtain 10 mmol of end product)	2,3- Naphthalenedicarboxaldeh yde	5	Lab-made starting material, \$942 Based on previous calculation
	Triphnyl phosphine	0	
	Ethyl bromoacetate	0	
	Potassium carbonate	0	

Safety	2,3- Naphthalenedicarboxaldeh yde	N/A	Lab-made starting material, safety information not found
	Triphnyl phosphine	0	
	Ethyl bromoacetate	5	toxic
	Potassium carbonate	0	
Technical set-up	Common setup	0	
Temperature/time	Heating, > 1 h	3	
Workup and purification	Simple filtration	0	
	Classical chromatography	10	
Eco-scale point	100-63=37		

Reference

- 1. Lin, C.; Lin, K.; Pal, B.; Tsouz, L., Chem. Commun., 2009, 803-805
- 2. Angus, R.O.; Johnson, R. P., J. Org. Chem., 1983, 48, 273-276
- 3. Wilcox, C. F. Jr.; Weber, K. A., J. Org. Chem., 1986, 51, 1088-1095
- 4. Achar, T. K.; Maiti, S.; Mal, P. RSC Adv., 2014, 4, 12834-12839
- 5. Firouzabadi, H.; Mostafavipoor, Z., Bull. Chem. Soc. Jpm., 1983, 56, 914-917
- 6. Mallouli, A., Lepage, Y., Synthesis, 1980, 9, 689
- 7. Andersen, J.; Mack, J. *Chemical Science* **2017**, *8*, 5447-5453
- 8. K. Van Aken, L. Strekowski and L. Patiny, *Beilstein J. Org. Chem.*, **2006**, *2*, No. 3, No pp. given.