Supporting information

Selective Wacker type oxidation of a macrocyclic diene to the corresponding monounsaturated ketone used as fragrance

Tom Brunzel^{*a}, Johannes Heppekausen^b, Johannes Panten^b and Angela Köckritz^a

^aLeibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany. ^bSymrise AG, Mühlenfeldstraße 1, 37603 Holzminden, Germany.

Table of contents

- I. GC chromatogram for the Wacker type oxidation of 1,9-cyclohexadecadiene (1)
- II. NMR spectra of the isomeric mixture of cyclohexadec-8-en-1-one (2)
- III. Analytical data for the isomeric diketone mixture (3)
- IV. Equations for the conversion, selectivity, yield and recovery rate

I. GC chromatogram for the Wacker type oxidation of 1,9-cyclohexadecadiene (1)

Figure S1 Chromatogram for the oxidation of the isomeric mixture of 1,9-CHDD to 8-CHD at different reaction times: • trans/trans-1,9-CHDD, • cis/trans-1,9-CHDD, • cis/cis-1,9-CHDD, • trans-8-CHD, • cis-8-CHD, - t = 0 h, - t = 1 h, - t = 3 h, - t = 5 h, - t = 8 h.

II. NMR spectra of the isomeric mixture of 1,9-cyclohexadecadiene (1)

Figure S2 ¹H-NMR spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the methyl group of the deuterated acetonitrile (1.94 ppm).

Figure S3 ¹³C DEPT 135 NMR spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the acetyl group of the deuterated dimethylacetamide in the solvent mixture (20.738 ppm).

Figure S4 ¹H,¹H-COSY spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the methyl group of the deuterated acetonitrile (1.94 ppm).

Figure S5 ¹H,¹³C-HMBC spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the methyl group of the deuterated acetonitrile (1.94 ppm) and to the acetyl group of the deuterated dimethylacetamide in the solvent mixture (20.738 ppm).

Figure S6 ¹H,¹³C-HSQC spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the methyl group of the deuterated acetonitrile (1.94 ppm) and to the acetyl group of the deuterated dimethylacetamide in the solvent mixture (20.738 ppm).

Figure S7 ¹H-NMR spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) after addition of $Pd(NO_3)_2 \cdot 2$ H₂O in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the methyl group of the deuterated acetonitrile (1.94 ppm).

Figure S8 ¹³C APT NMR spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) after addition of $Pd(NO_3)_2 \cdot 2 H_2O$ in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H_2O . Spectrum is calibrated to the acetyl group of the deuterated dimethylacetamide in the solvent mixture (20.738 ppm).

Figure S9 ¹H,¹H-COSY spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) after addition of $Pd(NO_3)_2 \cdot 2$ H₂O in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the methyl group of the deuterated acetonitrile (1.94 ppm).

Figure S10 ¹H,¹³C-HSQC spectrum of the isomeric mixture of 1,9-cyclohexadecadiene (1) after addition of $Pd(NO_3)_2 \cdot 2 H_2O$ in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H₂O. Spectrum is calibrated to the methyl group of the deuterated acetonitrile (1.94 ppm) and to the acetyl group of the deuterated dimethylacetamide in the solvent mixture (20.738 ppm).

Figure S11 ¹H,¹⁵N-HMBC spectrum of (Z/Z)-1,9-cyclohexadecadiene (1) after addition of $Pd(NO_3)_2 \cdot 2 H_2O$ and $Fe(NO_3)_3 \cdot 9 H_2O$ in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H_2O . The sample was aged for three days.

Figure S12 ¹H,¹⁵N-HSQC spectrum of (Z/Z)-1,9-cyclohexadecadiene (1) after addition of $Pd(NO_3)_2 \cdot 2 H_2O$ and $Fe(NO_3)_3 \cdot 9 H_2O$ in a solvent mixture consisting of DMA- d_9 , MeCN- d_3 and H_2O . The sample was aged for three days.

III. Analytical data for the isomeric diketone mixture (3)

Figure S13 ATR-IR spectrum of the isomeric diketone mixture (3) consisting of cyclohexadecane-1,8-dione and cyclohexadecane-1,9-dione.

Figure S14 GC from the isolated diketone mixture (**3**) consisting of cyclohexadecane-1,8-dione and cyclohexadecane-1,9-dione.

Figure S15 Mass spectrum of the GC signal with the retention time of 29.538 min

Figure S16 Mass spectrum of the GC signal with the retention time of 29.943 min

target	252.20838	found mass	252.20869

Table S1 HR-MS (EI) of the diketone (3)

Figure S17 ¹H-NMR s of the isomeric mixture of the diketone (3) consisting of cyclohexadecane-1,8-dione and cyclohexadecane-1,9-dione in $CDCl_3$.

Figure S18 ¹³C-NMR spectrum of the isomeric mixture of the diketone (**3**) consisting of cyclohexadecane-1,8-dione and cyclohexadecane-1,9-dione in CDCl₃. **a**) High field aliphatic signal range. **b**) Low field olefinic signal range. **c**) Whole spectrum.

atom	calculated for C ₁₆ H ₂₈ O ₂	found for C ₁₆ H ₂₈ O ₂
С	76.14 wt.%	76.08 wt.%
Н	11.18 wt.%	10.67 wt.%

Table S2 Elemental analysis of the isomeric mixture with the molecular mass $M(C_{16}H_{28}O_2) = 252.3971 \text{ g/mol}$.

IV. Equations for the conversion, selectivity, yield and recovery rate

Conversion

$$X_{S} = \frac{n_{S,0} - n_{S}}{n_{S,0}} \cdot 100 = 1 - \frac{n_{S}}{n_{S,0}} \cdot 100$$

Xs	Conversion of the substrate
n _{s,0}	Initial moles of the substrate
ns	Moles of the substrate found after reaction

Selectivity

$S_{P} = \frac{n_{P}}{n_{S,0} - n_{S}} \cdot 100$	
S _P	Selectivity of the product
n _{s,0}	Initial moles of substrate
n _s	Moles of substrate found after reaction
n _P	Moles of product found after reaction

Yield

$Y_P = \frac{n_P}{n_{S,0}} \cdot 100$	
Y _P	Yield of the product
n _{s,0}	Initial moles of substrate
n _P	Moles of product found after reaction

Recovery rate

n_{s,0}

n_s n_P

$$rr = \frac{\sum n_{S} + n_{P}}{n_{S,0}} \cdot 100$$

Recovery rate of the reaction
Initial moles of substrate
Moles of substrate found after reaction
Moles of product found after reaction