Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Copper-catalyzed direct C-H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides.

Michał Jakubczyk,^a Satenik Mkrtchyan,^{*a} Izabela D. Madura,^b Paulina H. Marek,^{b,c} and Viktor O. Iaroshenko.^{*a}

^aLaboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland. E-mail: <u>iva108@gmail.com</u>, <u>viktori@cbmm.lodz.pl</u>

^bDepartment of Inorganic Chemistry, Faculty of Chemistry, Warsaw University of Technology. Noakowskiego 3, 00-664, Warsaw, Poland. ^cUniversity of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.

Table of Contents

(A)	Experimental section	-3
(B)	Characterization of products	5
(C)	Copies ¹ H and ¹³ C NMR spectra	30
(D)	X-ray single crystal analysis of compounds 1c, 2f, 5b, 5d, 5f, 5i, 5k and 5m	145

(A) Experimental section.

Known starting materials: 1-[[4-methylphenyl]methyl]-4-nitro-1*H*-pyrazole (**sm1**), 4-nitro-1-phenethyl-1*H*-pyrazole (**sm2**), 4-nitro-1-butyl-1*H*-pyrazole (**sm4**), 3-methyl-1-phenyl-1*H*-pyrazol-5-amine (**sm5**), 4-nitro-1-phenethyl-1*H*-imidazole (**sm7**), 2-methyl-4-nitro-1-phenethyl-1*H*-imidazole (**sm9**), 1-[[4-methylphenyl]methyl]-1*H*-benzimidazole (**sm10**), 1-phenethyl-1H-1,2,4-triazole (**sm11**), 4*H*-chromen-4-one (**sm12**), 1-(2-iodobenzyl)-1*H*-benzo[*d*]imidazole (**sm15**) - were prepared according to literature procedures.^{1–7} Triazole **sm9** was obtained as a 1 : 8.5 molar ratio mixture of 4*H*- and 1*H*- 1,2,4-triazole *N*-alkylation products, respectively. However, only the 1*H*-isomer underwent the selenylation giving the expected C(5)-substituted product after chromatographic separation from impurities and both starting materials (**Table 4**, Entry 46). Starting materials **sm3**, **sm6**, **sm8**, **sm13** and **sm14** (**Scheme 1**) were prepared according to the general procedure described below. Commercially available reagents, catalysts and anhydrous and degassed solvents were used without further purification. Flash column chromatography was performed with Merck silica gel 60 (230-400 mesh). The solvents for column chromatography were distilled before use. Thin layer chromatography was carried out using Merck TLC Silica gel 60 F254 and visualized by short-wavelength ultraviolet light or by treatment with iodine or potassium permanganate (KMnO₄) stain. Melting points are uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker 200 and 500 MHz at 20^oC. All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals for CHCl₃ (7.26 ppm) and DMSO (2.50 ppm). All ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77.00 ppm) or DMSO (39.70 ppm) and were obtained with ¹H decoupling. Coupling constants, *J*, are reported in Hertz (Hz). Gas chromatography on Silica gel.

Scheme 1: Preparation of previously unknown starting materials.

General procedure for the *N*-alkylation of pyrazol and imidazole derivatives (starting materials sm3, sm6, sm8, sm13, sm14): Corresponding 4-nitro-1*H*-pyrazole (1eq.) and K₂CO₃ (2.3eq.) successively were weighed to air and placed in a Schlenk flask, equipped with a magnetic stir bar, which then was capped with a rubber septum. The reaction

vessel was evacuated and backfilled with argon. The DMF (8mL for 1g of 4-nitro-1*H*-pyrazole) and corresponding alkyl bromide (1.3eq.) were added via a syringe, and the reaction was heated to 90 °C for 8 h. Upon completion, the reaction was cooled to room temperature and concentrated under vacuum. The crude mass was washed with water, which was extracted with chloroform afterward. Finally, the organic phase was dried (Na₂SO₄), filtered, and evaporated to dryness, or (if necessary) the residue was purified by column chromatography typically using hexane/ethyl acetate mixtures to provide the desired alkylated product.

General procedure for the synthesis of diorganyl selenides (compounds 1a-1i, 2a-2f, 3a-3c, 4a-4d, 5a-5m, 6, 7a-7d, 8, 9a, 9b, 10a, 10b, 11, 12a, 12b): An Ace Glass Pressure Tube was equipped with a suitable stirring pellet and loaded with 250mg (1.15mmol, 1eq.) of 1-[(4-methylphenyl)methyl]-4-nitro-1*H*-pyrazole, 502mg (2.30mmol, 2eq.) of 3-iodotoluene, 273mg (3.45mmol, 3.5eq.) of selenium (100 mesh), 26mg (0.11mmol, 0.1eq.) of CuBr₂ and 636mg (4.60mmol, 4eq.) of K₂CO₃. 1mL of dry DMSO was added and the tube was carefully closed with an original Ace Glass Tube (Teflon) plug. The vessel was placed in an aluminium heating-block on a hotplate. The reaction was kept in 115°C for 24h. After cooling down - the pressure tube was carefully opened under venting hood and the mixture was washed to a flask with MeOH. The volatiles were removed using a rotary evaporator and DMSO was removed by heating to about 60 °C under vacuum (oil vacuum pump). The solid crude mixture was purified by column chromatography typically using hexane/ethyl acetate gradient to provide the desired selenide.

General procedure for the synthesis of benzoselenazines (compounds 13a, 13b and 13c): An Ace Glass Pressure Tube was equipped with a suitable stirring pellet and loaded with 360mg (1.07mmol, 1eq.) of 1-(2-iodobenzyl)-1*H*-benzo[*d*]imidazole (**sm15**), 196mg (2.47mmol, 2.3eq.) of selenium (100 mesh), 24mg (0.10mmol, 0.1eq.) of CuBr₂ and 596mg (4.30mmol, 4eq.) of K₂CO₃. 1mL of dry DMSO was added and the tube was carefully closed with an original Ace Glass Tube (Teflon) plug. The vessel was placed in an aluminium heating-block on a hotplate. The reaction was kept in 115 °C for 24h. After cooling down - the pressure tube was carefully opened under venting hood and the mixture was washed to a flask with MeOH. The volatiles were removed using a rotary evaporator and DMSO was removed by heating to about 60 °C under vacuum (oil vacuum pump). The solid crude mixture was purified by column chromatography typically using hexane/ethyl acetate gradient to provide the desired benzoselenazine.

(B) Characterization of products.

4-nitro-1-(3-phenylpropyl)-1H-pyrazole (sm3): white powder, mp. 55-56 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.08 (s, 2H, C(3) and C(5)-pyrazole), 7.31 (t, 2H, ³J = 7.4 Hz, CH_{Ar}), 7.22 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.17 (d, 2H, ³J = 7.0 Hz, CH_{Ar}), 4.14 (t, 2H, ³J = 7.1 Hz, CH₂), 2.65 (t, 2H, ³J = 7.5 Hz, CH₂), 2.33 - 2.18 (m, 2H, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 139.98, 135.94, 128.80, 128.56, 128.47, 126.58, 52.72, 32.47, 31.08, MS (GC, 70 eV): *m/z* = 231 (M⁺, 19%), 126 (29), 118 (100), 91 (31), 65 (12), HRMS (TOF MS ES+): calcd for C₁₂H₁₄N₃O₂ (M + H)⁺ 232.1086, found 232.1088.

1-[(4-methylphenyl)methyl]-4-nitro-1H-imidazole (sm6): white powder, 103-104 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.70 (s, 1H, C(2)-imidazole), 7.47 (s, 1H, C(5)-imidazole), 7.22 (d, 2H, ³J = 7.8 Hz, CH_{Ar}), 7.13 (d, 2H, ³J = 7.9 Hz, CH_{Ar}), 5.12 (s, 2H, CH₂), 2.37 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 139.55, 136.03, 130.65, 130.29, 128.12, 119.38, 52.17, 21.31, MS (GC, 70 eV): m/z = 217 (M⁺, 11%), 105 (100), 77 (13), HRMS (TOF MS ES+): calcd for C₁₁H₁₁N₃O₂Na (M + Na)⁺ 240.0749, found 240.0754.

4-nitro-1-(3-phenylpropyl)-1H-imidazole (sm8): white powder, mp. 79-80 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.75 (s, 1H, C(2)-imidazole), 7.40 (s, 1H, C(5)-imidazole), 7.32 (t, 2H, ³J = 7.5 Hz, CH_{Ar}), 7.24 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.15 (d, 2H, ³J = 7.2 Hz, CH_{Ar}), 4.01 (t, 2H, ³J = 7.2 Hz, CH₂), 2.67 (t, 2H, ³J = 7.4 Hz, CH₂), 2.21 (quint, 2H, ³J = 7.3 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 139.36, 136.08, 128.96, 128.40, 126.84, 119.13, 47.57, 32.35, 31.88, MS (GC, 70 eV): *m/z* = 231 (M⁺, 29%), 127 (100), 118 (57), 91 (82), 77 (13), 65 (24), HRMS (TOF MS ES+): calcd for C₁₂H₁₃N₃O₂Na (M + Na)⁺ 254.0905, found 254.0906.

1-(2-iodobenzyl)-4-nitro-1H-pyrazole (sm13): light yellow crystals, mp. 100 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.12 (s, 1H, C(3)-pyrazole), 8.11 (s, 1H, C(5)-pyrazole), 7.91 (dd, 1H, ³J = 7.9 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.39 (td, 1H, ³J = 7.6 Hz, ⁴J = 1.1 Hz, CH_{Ar}), 7.23 (dd, 1H, ³J = 7.7 Hz, ⁴J = 1.4 Hz, CH_{Ar}), 7.10 (td, 1H, ³J = 7.8 Hz, ⁴J = 1.6 Hz, CH_{Ar}), 5.40 (s, 2H, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 140.29, 136.58, 136.23, 136.14, 130.98, 130.49, 129.26, 129.04, 99.40, 61.55, MS (GC, 70 eV): *m/z* = 217 (2-iodobenzene-CH₂⁺, 14%), minus iodide 202 (100), 156 (35), 129 (10), 90 (43), HRMS (TOF MS ES+): calcd for C₁₀H₉IN₃O₂ (M + H)⁺ 329.9739, found 329.9742.

1-(2-iodobenzyl)-4-nitro-1H-imidazole (sm14): white powder, mp. 76-77 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.84 - 7.80 (m, 1H, CH_{Ar}), 7.73 (s, 1H, C(2)-imidazole), 7.51 (s, 1H, C(5)-imidazole), 7.36 - 7.30 (m, 1H, CH_{Ar}), 7.19 (d, 1H, ³J = 6.5 Hz, CH_{Ar}), 7.06 - 7.01 (m, 1H, CH_{Ar}), 5.23 (s, 2H, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 147.87, 140.22, 136.53, 136.21, 130.94, 130.02, 129.26, 119.69, 99.16, 56.34, MS (GC, 70 eV): m/z = 329 (M⁺, 22%), 217 (100), 202 (28), 156 (84), 90 (65), HRMS (TOF MS ES+): calcd for C₁₀H₈IN₃O₂ (M + H)⁺ 329.9739, found 329.9744.

1-[(4-methylphenyl)methyl]-5-[(3-methylphenyl)selanyl]-4-nitro-1H-pyrazole (1a): light yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.25 (s, 1H, C(3)-pyrazole), 7.19 - 7.03 (m, 8H, CH_{Ar}), 5.41 (s, 2H, CH₂), 2.33 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 139.88, 138.21, 137.88, 137.47, 133.11, 132.15, 129.63, 129.61, 129.54, 129.52, 128.30, 127.80, 127.76, 55.40, 21.29, 21.20, MS (GC, 70 eV): *m/z* = 387 (M⁺, 5%), 280 (6), 222 (12), 195 (4), 105 (100), 91 (6), 77 (11), HRMS (TOF MS ES+): calcd for C₁₈H₁₈N₃O₂Se (M + H)⁺ 388.0564, found 388.0566.

1-[(4-methylphenyl)methyl]-5-[(4-methylphenyl)selanyl]-4-nitro-1H-pyrazole (1b): white powder, mp. 55-56 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.23 (s, 1H, C(3)-pyrazole), 7.26 (d, 2H, ³J = 8.1 Hz, CH_{Ar}), 7.11 (d, 2H, ³J = 8.0 Hz, CH_{Ar}), 7.04 (dd, 4H, ³J = 8.1 Hz, ⁴J = 4.7 Hz, CH_{Ar}), 5.39 (s, 2H, CH₂), 2.33 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 139.12, 138.21, 137.73, 137.45, 133.08, 132.17, 130.65, 129.52, 128.78, 127.72, 124.25, 55.33, 21.21, MS (GC, 70 eV): *m/z* = 387 (M⁺, 5%), 280 (7), 195 (3), 119 (2), 105 (100), 91 (6), 77 (12), HRMS (TOF MS ES+): calcd for C₁₈H₁₈N₃O₂Se (M + H)⁺ 388.0564, found 388.0562.

1-[(4-methylphenyl)methyl]-5-[(4-ethylphenyl)selanyl]-4-nitro-1H-pyrazole (1c): yellow powder, mp. 58 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.24 (s, 1H, C(3)-pyrazole), 7.29 (d, 2H, ³J = 8.2 Hz, CH_{Ar}), 7.10 (d, 2H, ³J = 8.0 Hz, CH_{Ar}), 7.07 (d, 2H, ³J = 8.1 Hz, CH_{Ar}), 7.04 (d, 2H, ³J = 8.0 Hz, CH_{Ar}), 5.41 (s, 2H, CH₂), 2.61 (q, 2H, ³J = 7.6 Hz, CH₂), 2.33 (s, 3H, CH₃), 1.21 (t, 3H, ³J = 7.6 Hz, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 145.36, 138.18, 137.75, 137.45, 133.15, 132.16, 129.51, 129.47, 128.73, 127.72, 124.47, 55.30, 28.54, 21.21, 15.39, MS (GC, 70 eV): *m/z* = 401 (M⁺, 5%), 280 (8), 209 (3), 105 (100), 77 (11), HRMS (TOF MS ES+): calcd for C₁₉H₂₀N₃O₂Se (M + H)⁺ 402.0721, found 402.0721.

1-[(4-methylphenyl)methyl]-5-[(3-(trifluoromethyl)phenyl)selanyl]-4-nitro-1H-pyrazole (1d): light yellow powder, mp. 68-70 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.28 (s, 1H, C(3)-pyrazole), 7.50 (d, 1H, ³*J* = 7.8 Hz, CH_{Ar}), 7.45 - 7.40 (m, 2H, CH_{Ar}), 7.31 (t, 1H, ³*J* = 8.0 Hz, CH_{Ar}), 7.07 (q, 4H, ³*J* = 8.3 Hz, CH_{Ar}), 5.51 (s, 2H, CH₂), 2.30 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 138.56, 138.28, 137.63, 135.44, 131.99 (q, ²*J*_{CF} = 32.7 Hz, *C*_{ipso}-CF₃), 131.85, 130.11, 129.68, 129.35, 128.64 (dd, *J*_{CF} = 7.5 Hz, *J*_{CF} = 3.7 Hz), 127.63, 126.66, 125.32 (dd, *J*_{CF} = 6.9 Hz, *J*_{CF} = 3.3 Hz), 123.34 (q, ¹*J*_{CF} = 273.0 Hz, *C*F₃), 55.87, 21.16, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -62.15 (CF₃), MS (GC, 70 eV): *m/z* = 441 (M⁺, 5%), 280 (3), 105 (100), 77 (10), HRMS (TOF MS ES+): calcd for C₁₈H₁₅F₃N₃O₂Se (M + H)⁺ 442.0282, found 442.0277.

1-[(4-methylphenyl)methyl]-5-[(4-(trifluoromethyl)phenyl)selanyl]-4-nitro-1H-pyrazole (1e): white powder, mp. 75-76 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.30 (s, 1H, C(3)-pyrazole), 7.40 (d, 2H, ³*J* = 8.2 Hz, CH_{Ar}), 7.27 - 7.24 (m, 2H, CH_{Ar}), 7.03 (q, 4H, ³*J* = 8.2 Hz, CH_{Ar}), 5.49 (s, 2H, CH₂), 2.29 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): δ 138.59, 138.53, 137.69, 133.4 (d, ²*J*_{CF} = 11.8 Hz, *C*_{ipso}-CF₃), 131.97, 131.82, 131.34, 129.66, 127.73, 126.52 (dd, *J*_{CF} = 7.1 Hz, *J*_{CF} = 3.3 Hz), 126.23, 125.08 (q, ¹*J*_{CF} = 288.3 Hz, CF₃), 55.89, 21.19, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -62.20 (CF₃), MS (GC, 70 eV): *m/z* = 441 (M⁺, 7%), 280 (6), 105 (100), 77 (13), HRMS (TOF MS ES+): calcd for C₁₈H₁₄F₃N₃O₂SeNa (M + Na)⁺ 464.0101, found 464.0104.

1-[(4-methylphenyl)methyl]-5-[(2-fluorophenyl)selanyl]-4-nitro-1H-pyrazole (1f): light yellow powder, mp. 63-65 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.25 (s, 1H, C(3)-pyrazole), 7.33 - 7.23 (m, 2H, CH_{Ar}), 7.13 - 6.99 (m, 6H, CH_{Ar}), 5.51 (s, 2H, CH₂), 2.32 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 161.10 (d, ¹J_{CF} = 245.3 Hz, C_{ipso} -F), 138.34, 138.25, 137.52, 134.11 (d, J = 1.6 Hz), 132.06, 130.91 (d, $J_{CF} = 7.8$ Hz), 129.59, 127.82, 126.33 (d, J = 1.7 Hz), 125.43 (d, $J_{CF} = 3.3$ Hz), 116.12 (d, ²J_{CF} = 22.6 Hz), 115.07 (d, ²J_{CF} = 2.6 Hz), 115.07 (d, ²J_{CF} = 2.6 Hz), 125.07 (d, ²J_{CF} =

21.4 Hz), 55.57, 21.20, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -103.00 (CF), MS (GC, 70 eV): m/z = 391 (M⁺, 5%), 280 (5), 105 (100), 79 (12), 77 (11), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0317.

1-[(4-methylphenyl)methyl]-5-[(3-fluorophenyl)selanyl]-4-nitro-1H-pyrazole (1g): yellow oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.27 (s, 1H, C(3)-pyrazole), 7.23 - 7.16 (m, 1H, CH_{Ar}), 7.12 - 7.05 (m, 5H, CH_{Ar}), 6.96 (td, 1H, ³J = 8.4 Hz, ⁴J = 2.0 Hz, CH_{Ar}), 6.88 (dd, 1H, ³J = 8.4 Hz, ⁵J = 1.3 Hz, CH_{Ar}), 5.47 (s, 2H, CH₂), 2.32 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 162.79 (d, ¹J_{CF} = 251.4 Hz, *C*_{ipso}-F), 138.47, 138.19, 137.56, 131.96, 131.02 (d, *J*_{CF} = 8.1 Hz), 129.74 (d, *J*_{CF} = 7.1 Hz), 129.61, 127.74, 127.55 (d, *J*_{CF} = 3.1 Hz), 126.91, 118.93 (d, ²J_{CF} = 23.2 Hz), 115.61 (d, ²J_{CF} = 21.1 Hz), 55.70, 21.18, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -109.57 (CF), MS (GC, 70 eV): *m/z* = 391 (M⁺, 6%), 280 (6), 105 (100), 79 (12), 77 (11), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0316.

1-[(4-methylphenyl)methyl]-5-[(4-fluorophenyl)selanyl]-4-nitro-1H-pyrazole (1h): light yellow oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.24 (s, 1H, C(3)-pyrazole), 7.35 - 7.29 (m, 2H, CH_{Ar}), 7.1 (d, 2H, ³*J* = 8.0 Hz, CH_{Ar}), 7.0 (d, 2H, ³*J* = 8.0 Hz, CH_{Ar}), 6.95 - 6.88 (m, 2H, CH_{Ar}), 5.46 (s, 2H, CH₂), 2.33 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.21 (d, ¹*J*_{CF} = 250.0 Hz, *C*_{ipso}-F), 138.45, 137.86, 137.61, 135.41 (d, *J*_{CF} = 8.2 Hz), 132.15, 129.67, 128.26, 127.65, 122,48 (d, *J*_{CF} = 3.3 Hz), 117.10 (d, ²*J*_{CF} = 22.0 Hz,), 55.58, 21.26, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -110.86 (CF), MS (GC, 70 eV): *m/z* = 391 (M⁺, 5%), 280 (4), 105 (100), 77 (12), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0314.

1-[(4-methylphenyl)methyl]-5-[(4-bromophenyl)selanyl]-4-nitro-1H-pyrazole (1i): white powder, mp. 100-101 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.32 (s, 1H, C(3)-pyrazole), 7.52 (d, 1H, ³J = 7.8 Hz, CH_{Ar}), 7.13 - 7.00 (m, 6H, CH_{Ar}), 6.65 (d, 1H, ³J = 7.8 Hz, CH_{Ar}), 5.45 (s, 2H, CH₂), 2.28 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 138.90, 138.47, 137.70, 133.31, 132.22, 131.78, 130.39, 129.59, 128.85, 128.57, 128.12, 126.79, 123.28, 55.85, 21.24, MS (GC, 70 eV): *m/z* = 451 (M⁺, 5%), 280 (8), 105 (100), 79 (12), 77 (12), HRMS (TOF MS ES+): calcd for C₁₇H₁₅BrN₃O₂Se (M + H)⁺ 451.9513, found 451.9510.

Identification of byproduct 1,2-bis(1-(4-methylbenzyl)-4-nitro-1H-pyrazol-5-yl)diselane (1by): colorless crystals, mp. 59-60 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.22 (s, 2H, C(3)-pyrazole), 7.19 (d, 4H, ³J = 7.9 Hz, CH_{Ar}), 7.10 (d, 4H, ³J = 8.0 Hz, CH_{Ar}), 5.30 (s, 4H, CH₂), 2.33 (s, 6H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 138.76, 137.47, 131.82, 129.91, 127.75, 125.96, 56.01, 21.33, MS (GC, 70 eV): m/z = 592 (M⁺, 3%), 296 (37), 279 (11), 176 (7), 121 (26), 105 (100), 79 (17), 77 (17), HRMS (TOF MS ES+): calcd for C₂₂H₂₁N₆O₄Se₂ (M + H)⁺ 592.9955, found 592.9967.

5-(3-(trifluoromethyl)phenylselanyl)-4-nitro-1-phenethyl-1H-pyrazole (2a): light yellow oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.31 (s, 1H, C(3)-pyrazole), 7.60 (s, 1H, CH_{Ar}), 7.53 (d, 1H, ${}^{3}J$ = 7.6 Hz, CH_{Ar}), 7.38 - 7.28 (m, 2H, CH_{Ar}), 7.27 - 7.20 (m, 3H, CH_{Ar}), 6.99 (dd, 2H, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.9 Hz, CH_{Ar}), 4.58 (t, 2H, ${}^{3}J$ = 7.1 Hz, CH₂), 3.13 (t, 2H, ${}^{3}J$ = 7.1 Hz, CH₂), 1³C NMR (126 MHz, CDCl₃): δ (ppm): 137.88, 137.54, 136.70, 135.01, 132.13 (q, ${}^{2}J_{CF}$ = 33.0 Hz, C_{ipso} -CF₃), 130.32, 129.77, 128.98, 128.88, 128.34 (dd, J_{CF} = 7.5 Hz, J_{CF} = 3.9 Hz), 127.51, 127.39, 125.33 (q, J_{CF} = 3.6 Hz), 123.41 (q, ${}^{1}J_{CF}$ = 272.9 Hz, CF₃), 53.11, 36.37, ${}^{19}F{}^{1}H$ NMR (188.34 MHz, CDCl₃): δ (ppm): -62.14 (CF₃), MS (GC, 70 eV): m/z = 441 (M⁺, 7%), 337 (76), 230 (24), 176 (28), 104 (94), 91 (100), 77 (38), 65 (21), HRMS (TOF MS ES+): calcd for C₁₈H₁₅F₃N₃O₂Se (M + H)⁺ 442.0282, found 442.0285.

5-(2-fluorophenylselanyl)-4-nitro-1-phenethyl-1H-pyrazole (2b): light yellow oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.26 (s, 1H, C(3)-pyrazole), 7.35 - 7.20 (m, 5H, CH_{Ar}), 7.10 - 6.99 (m, 4H, CH_{Ar}), 4.61 (t, 2H, ³*J* = 7.2 Hz, CH₂), 3.12 (t, 2H, ³*J* = 7.2 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 161.23 (d, ¹*J*_{CF} = 245.3 Hz, *C*_{ipso}-F), 137.67, 137.60, 136.87, 134.41, 131.04 (d, *J*_{CF} = 7.8 Hz), 128.92, 127.29, 127.04, 125.47 (d, *J*_{CF} = 3.3 Hz), 116.13 (d, ²*J*_{CF} = 22.8 Hz), 115.14 (d, ²*J*_{CF} = 21.4 Hz), 53.04, 36.39, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -103.01 (CF), MS (GC, 70 eV): *m/z* = 391 (M⁺, 10%), 287 (88), 176 (39), 109 (44), 104 (55), 91 (100), 77 (45), 65 (23), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0320.

5-(3-fluorophenylselanyl)-4-nitro-1-phenethyl-1H-pyrazole (2c): light yellow oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.30 (s, 1H, C(3)-pyrazole), 7.35 - 7.16 (m, 4H, CH_{Ar}), 7.08 - 6.90 (m, 5H, CH_{Ar}), 4.56 (t, 2H, ³J = 7.2 Hz, CH₂), 3.13 (t, 2H, ³J = 7.2 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 162.85 (d, ¹J_{CF} = 251.5 Hz, C_{ipso} -F), 137.70, 137.49, 136.76, 131.13 (d, J_{CF} = 8.0 Hz), 130.07 (d, J_{CF} = 7.0 Hz), 128.89, 128.83, 127.63, 127.29, 127.26 (d, J_{CF} = 3.4 Hz), 118.65 (d, ²J_{CF} = 23.1 Hz), 115.60 (d, ²J_{CF} = 21.0 Hz), 53.00, 36.24, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -109.39 (CF), MS (GC, 70 eV): *m/z* = 391 (M⁺, 12%), 287 (80), 176 (36), 109 (36), 104 (60), 91 (100), 77 (41), 65 (21), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0319.

5-(4-chlorophenylselanyl)-4-nitro-1-phenethyl-1H-pyrazole (2d): yellow crystals, mp. 95 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.27 (s, 1H, C(3)-pyrazole), 7.32 - 7.22 (m, 3H, CH_{Ar}), 7.22 - 7.12 (m, 4H, CH_{Ar}), 7.01 (dd, 2H, ³J = 7.3 Hz, ⁴J = 2.0 Hz, CH_{Ar}), 4.55 (t, 2H, ³J = 7.1 Hz, CH₂), 3.13 (t, 2H, ³J = 7.1 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 137.73, 137.32, 136.85, 135.03, 133.67, 130.06, 128.95, 128.90, 128.30, 127.30, 126.50, 52.97, 36.23, MS (GC, 70 eV): *m/z* = 407 (M⁺, 12%), 303 (60), 280 (15), 176 (40), 125 (23), 104 (48), 91 (100), 77 (51), 65 (23), HRMS (TOF MS ES+): calcd for C₁₇H₁₅ClN₃O₂Se (M + H)⁺ 408.0018, found 408.0017.

5-(4-methoxyphenylselanyl)-4-nitro-1-phenethyl-1H-pyrazole (2e): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.22 (s, 1H, C(3)-pyrazole), 7.35 (d, 2H, ³J = 8.9 Hz, CH_{Ar}), 7.31 - 7.21 (m, 3H, CH_{Ar}), 7.04 (d, 2H, ³J = 8.0 Hz, CH_{Ar}), 6.79 (d, 2H, ³J = 8.9 Hz, CH_{Ar}), 4.50 - 4.45 (m, 2H, CH₂), 3.77 (s, 3H, OCH₃), 3.11 - 3.03 (m, 2H, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 160.48, 137.40, 137.01, 136.97, 135.58, 129.76, 128.85, 128.84, 127.14, 117.73, 115.55, 55.43, 52.79, 36.11, MS (GC, 70 eV): *m/z* = 403 (M⁺, 29%), 299 (17), 280 (22), 123 (100), 105 (25), 91 (37), 77 (24), HRMS (TOF MS ES+): calcd for C₁₈H₁₈N₃O₃Se (M + H)⁺404.0513, found 404.0521.

2-(4-nitro-1-phenethyl-1H-pyrazol-5-ylselanyl)-3-bromopyridine (2f): white powder, 120-121 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.34 (s, 1H, C(3)-pyrazole), 8.13 (dd, 1H, ³J = 4.7 Hz, ⁴J = 1.5 Hz, CH_{Ar}), 7.71 (dd, 1H, ³J = 7.9 Hz, ⁴J = 1.5 Hz, CH_{Ar}), 7.29 - 7.18 (m, 3H, CH_{Ar}), 7.08 - 7.03 (m, 2H, CH_{Ar}), 6.97 (dd, 1H, ³J = 7.9, ³J = 4.7 Hz, CH_{Ar}), 4.54 (t, 2H, ³J = 7.3 Hz, CH₂), 3.17 (t, 2H, ³J = 7.3 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 154.85, 148.86, 139.71, 138.14, 137.60, 137.06, 128.93, 128.83, 127.18, 122.73, 120.59, 53.29, 36.52, MS (GC, 70 eV): m/z = 406 (minus nitro, M⁺, 100%), 355 (13), 302 (42), 287 (7), 236 (8), 195 (13), 156 (23), 104 (74), 91 (79), 77 (84), 65 (35), HRMS (TOF MS ES+): calcd for C₁₆H₁₄BrN₄O₂Se (M + H)⁺ 452.9465, found 452.9467.

5-(2-fluorophenylselanyl)-4-nitro-1-(3-phenylpropyl)-1H-pyrazole (3a): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.23 (s, 1H, C(3)-pyrazole), 7.35 - 7.27 (m, 4H, CH_{Ar}), 7.21 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.14 - 7.06 (m, 4H, CH_{Ar}), 4.31 (t, 2H, ³J = 7.3 Hz, CH₂), 2.60 (t, 2H, ³J = 7.7 Hz, CH₂), 2.14 (quint, 2H, ³J = 7.6 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 161.19 (d, ¹J_{CF} = 245.6 Hz, C_{ipso}-F), 140.28, 137.85, 137.25, 134.33, 131.12 (d, J_{CF} = 7.7 Hz), 128.61, 128.35, 126.34, 126.31 (d, J_{CF} = 8.0 Hz), 125.54 (d, J_{CF} = 3.4 Hz), 116.22 (d, ²J_{CF} = 22.7 Hz), 115.02 (d, ²J_{CF} = 21.5 Hz), 51.48, 32.61, 31.15, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -102.72 (CF), MS (GC, 70 eV): *m/z* = 405 (M⁺, 1%), 287 (5), 230 (100), 202 (12), 175 (9), 117 (48), 109 (35), 91 (76), 65 (17), HRMS (TOF MS ES+): calcd for C₁₈H₁₇FN₃O₂Se (M + H)⁺ 406.0470, found 406.0474.

5-(3-fluorophenylselanyl)-4-nitro-1-(3-phenylpropyl)-1H-pyrazole (3b): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.25 (s, 1H, C(3)-pyrazole), 7.36 - 7.26 (m, 4H, CH_{Ar}), 7.19 - 7.14 (m, 3H, CH_{Ar}), 7.11 - 7.04 (m, 2H, CH_{Ar}), 4.23 (t, 2H, ³J = 7.4 Hz, CH₂), 2.58 (t, 2H, ³J = 7.5 Hz, CH₂), 2.11 (quint, 2H, ³J = 7.5 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 162.94 (d, ¹J_{CF} = 251.8 Hz, C_{ipso}-F), 140.19, 137.87, 137.37, 131.31 (d, J_{CF} = 8.0 Hz), 129.89 (d, J_{CF} = 7.0 Hz), 128.70, 128.41, 127.60 (d, J_{CF} = 3.2 Hz), 126.82, 126.46, 119.01 (d, ²J_{CF} = 23.1 Hz), 115.85 (d, ²J_{CF} = 21.1 Hz), 51.52, 32.64, 31.22, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -109.20 (CF), MS (GC, 70 eV): *m/z* = 405 (M⁺, 1%), 287 (4), 230 (100), 202 (10), 175 (7), 117 (45), 109 (21), 91 (61), 65 (14), HRMS (TOF MS ES+): calcd for C₁₈H₁₇FN₃O₂Se (M + H)⁺ 406.0470, found 406.0472.

5-(4-fluorophenylselanyl)-4-nitro-1-(3-phenylpropyl)-1H-pyrazole (3c): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.21 (s, 1H, C(3)-pyrazole), 7.41 - 7.38 (m, 2H, CH_{Ar}), 7.30 (t, 2H, ³J = 7.5 Hz, CH_{Ar}), 7.22 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.13 (d, 2H, ³J = 7.2 Hz, CH_{Ar}), 6.97 (t, 2H, ³J = 8.6 Hz, CH_{Ar}), 4.22 (t, 2H, ³J = 7.5 Hz, CH₂), 2.59 (t, 2H, ³J = 7.5 Hz, CH₂), 2.59 (t, 2H, ³J = 7.5 Hz, CH₂), 2.59 (t, 2H, ³J = 7.5 Hz, CH₂), 2.10 (quint, 2H, ³J = 7.5 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.02 (d, ¹J_{CF} = 250.0 Hz, *C*_{ipso}-F), 140.18, 137.33, 137.08, 135.24 (d, *J*_{CF} = 8.2 Hz), 128.54, 128.31, 127.83, 126.29, 122.51 (d, *J*_{CF} = 3.3 Hz), 117.14 (d, ²J_{CF} = 22.0 Hz), 51.27, 32.50, 31.04, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -110.50 (CF), MS (GC, 70 eV): *m/z* = 405 (M⁺, 1%), 287 (4), 230 (100), 202 (10), 175 (6), 117 (42), 109 (42), 91 (57), 65 (13), HRMS (TOF MS ES+): calcd for C₁₈H₁₇FN₃O₂Se (M + H)⁺ 406.0470, found 406.0473.

5-(2-methylphenylselanyl)-1-butyl-4-nitro-1H-pyrazole (4a): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.23 (s, 1H, C(3)-pyrazole), 7.24 - 7.20 (m, 2H, CH_{Ar}), 7.13 (d, 1H, ³J = 7.5 Hz, CH_{Ar}), 7.09 - 7.04 (m, 1H, CH_{Ar}), 4.09 (t, 2H, ³J = 7.5 Hz, CH₂), 2.40 (s, 3H, C_{Ar}-CH₃), 1.64 (quint, 2H, ³J = 7.5 Hz, CH₂), 1.19 (sext, 2H, ³J = 7.5 Hz, CH₂), 0.84 (t, 3H, ³J = 7.3 Hz, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 139.34, 137.63, 137.19, 132.34, 131.05, 129.34, 128.87, 127.83, 127.45, 51.86, 31.75, 22.18, 19.72, 13.60, MS (GC, 70 eV): *m/z* = 339 (M⁺, 30%), 322 (9), 232 (100), 186 (15), 176 (25), 168 (58), 128 (10), 115 (17), 105 (63), 91 (96), 77 (18), 65 (31), 55 (26), 41 (45), HRMS (TOF MS ES+): calcd for C₁₄H₁₈N₃O₂Se (M + H)⁺ 340.0564, found 340.0568.

5-(2-fluorophenylselanyl)-1-butyl-4-nitro-1H-pyrazole (4b): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.24 (s,1H, C(3)-pyrazole), 7.30 - 7.23 (m, 1H, CH_{Ar}), 7.15 (d, 1H, ³J = 7.8 Hz, CH_{Ar}), 7.11 - 7.05 (m, 1H, CH_{Ar}), 7.01 (td, 1H, ³J = 8.4 Hz, ⁴J = 2.4 Hz, CH_{Ar}), 4.24 (t, 2H, ³J = 7.4 Hz, CH₂), 1.73 (quint, 2H, ³J = 7.5 Hz, CH₂), 1.26 (sext, 2H, ³J = 7.5 Hz, CH₂), 0.89 (t, 3H, ³J = 7.3 Hz, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 162.99 (d, ¹J_{CF} = 251.7 Hz, C_{ipso}-F), 137.76, 137.33, 131.29 (d, J_{CF} = 8.1 Hz), 130.03 (d, J_{CF} = 7.1 Hz), 127.48 (d, J_{CF} = 3.2 Hz), 126.66, 118.88 (d, ²J_{CF} = 23.1 Hz), 115.78 (d, ²J_{CF} = 21.1 Hz), 51.97, 32.04, 19.74, 13.64, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -109.41 (CF), MS (GC, 70 eV): m/z = 343 (M⁺, 10%), 339 (21), 322 (5), 232 (97), 186 (11), 176 (29), 168 (100), 115 (10), 105 (39), 91 (44), 77 (9), 65 (17), 55 (27), 41 (38), HRMS (TOF MS ES+): calcd for C₁₃H₁₅FN₃O₂Se (M + H)⁺ 344.0314, found 344.0326.

5-(3-fluorophenylselanyl)-1-butyl-4-nitro-1H-pyrazole (4c): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.21 (s,1H, C(3)-pyrazole), 7.39 - 7.28 (m, 2H, CH_{Ar}), 7.08 (q, 2H, ³J = 8.2 Hz, CH_{Ar}), 4.28 (t, 2H, ³J = 7.4 Hz, CH₂), 1.74 (quint, 2H, ³J = 7.5 Hz, CH₂), 1.27 (sext, 2H, ³J = 7.5 Hz, CH₂), 0.89 (t, 3H, ³J = 7.4 Hz, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 161.21 (d, ¹J_{CF} = 245.5 Hz, C_{ipso}-F), 137.81, 137.23, 134.29, 131.09 (d, J_{CF} = 7.7 Hz), 126.11, 125.55 (d, J_{CF} = 3.4 Hz), 116.22 (d, ²J_{CF} = 22.7 Hz), 115.12 (d, ²J_{CF} = 21.4 Hz), 51.92, 32.03, 19.73, 13.63, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -102.91 (CF), MS (GC, 70 eV): *m*/*z* = 343 (M⁺, 11%), 232 (42), 168 (100), 109 (53), 91 (12), 55 (17), 41 (25), HRMS (TOF MS ES+): calcd for C₁₃H₁₅FN₃O₂Se (M + H)⁺ 344.0314, found 344.0316.

5-(4-fluorophenylselanyl)-1-butyl-4-nitro-1H-pyrazole (4d): yellow oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.16 (s, 1H, C(3)-pyrazole), 7.46 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 7.45 (d, 1H, ³J = 8.4 Hz, CH_{Ar}), 6.98 (t, 2H, ³J = 8.6 Hz, CH_{Ar}), 4.20 (t, 2H, ³J = 7.4 Hz, CH₂), 1.69 (quint, 2H, ³J = 7.5 Hz, CH₂), 1.23 (sext, 2H, ³J = 7.5 Hz, CH₂), 0.87 (t, 3H, ³J = 7.3 Hz, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.08 (d, ¹J_{CF} = 250.0 Hz, C_{ipso}-F), 137.28, 137.09, 135.15 (d, J_{CF} = 8.2 Hz), 127.72, 122.67 (d, J_{CF} = 3.4 Hz), 117.15 (d, ²J_{CF} = 22.0 Hz), 51.75, 31.89, 19.65, 13.55, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -110.75 (CF), MS (GC, 70 eV): m/z = 343 (M⁺, 23%), 232 (76), 190 (17), 175 (43), 168 (99), 109 (100), 95 (24), 83 (25), 55 (39), 41 (53), HRMS (TOF MS ES+): calcd for C₁₃H₁₅FN₃O₂Se (M + H)⁺ 344.0314, found 344.0317.

4-(m-tolylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5a): dark brown viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.61 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.1 Hz, CH_{Ar}), 7.49 (t, 2H, ³J = 7.9 Hz, CH_{Ar}), 7.35 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.11 (t, 1H, ³J = 7.6 Hz, CH_{Ar}), 7.06 (br.s, 1H, CH_{Ar}), 7.01 (d, 1H, ³J = 7.8 Hz, CH_{Ar}), 6.97 (d, 1H, ³J = 7.4 Hz, CH_{Ar}), 4.23 (br. s, 2H, NH₂), 2.293 (s, 3H, CH₃), 2.290 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.31, 148.69, 139.21, 138.75, 132.74, 129.74, 129.19, 128.64, 127.56, 126.95, 125.10, 123.54, 84.76, 21.54, 13.25, MS (GC, 70 eV): *m/z* = 343 (M⁺, 26%), 263 (100), 222 (13), 131 (15), 119 (24), 91 (15), 77 (45), 66 (12), HRMS (TOF MS ES+): calcd for C₁₇H₁₈N₃Se (M + H)⁺ 344.0666, found 344.0676.

4-(p-tolylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5b): pale yellow crystals, mp. 98-99 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.58 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.47 (t, 2H, ³J = 7.9 Hz, CH_{Ar}), 7.33 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.14 (d, 2H, ³J = 8.2 Hz, CH_{Ar}), 7.04 (d, 2H, ³J = 8.00 Hz, CH_{Ar}), 4.23 (br. s, 2H, NH₂), 2.287 (s, 3H, CH₃), 2.282 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.10, 148.51, 138.81, 135.75, 130.06, 129.58, 129.06, 128.26, 127.32, 123.36, 84.94, 20.99, 13.19, MS (GC, 70 eV): *m/z* = 343 (M⁺, 27%), 263 (100), 222 (12), 131 (11), 119 (17), 91 (14), 77 (35), HRMS (TOF MS ES+): calcd for C₁₇H₁₈N₃Se (M + H)⁺ 344.0666, found 344.0674.

4-(4-ethylphenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5c): dark brown viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.58 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.47 (t, 2H, ³J = 7.9 Hz, CH_{Ar}), 7.33 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.16 (d, 2H, ³J = 8.2 Hz, CH_{Ar}), 7.06 (d, 2H, ³J = 8.2 Hz, CH_{Ar}), 4.23 (br. s, 2H, NH₂), 2.58 (q, 2H, ³J = 7.6 Hz, CH₂), 2.28 (s, 3H, CH₃), 1.20 (t, 3H, ³J = 7.6 Hz, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.19, 148.58, 142.21, 138.79, 129.61, 129.36, 128.92, 128.27, 127.38, 123.43, 84.91, 28.41, 15.65, 13.19, MS (GC, 70 eV): *m/z* = 357 (M⁺, 25%), 277 (100), 262 (32), 131 (9), 119 (16), 77 (34), HRMS (TOF MS ES+): calcd for C₁₈H₂₀N₃Se (M + H)⁺ 358.0822, found 358.0831.

4-(3-(trifluoromethyl)phenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5d): dark green powder, mp. 104-105 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.58 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.60 - 7.47 (m, 3H, CH_{Ar}), 7.40 (d, 1H, ³J = 7.3 Hz, CH_{Ar}), 7.37 - 7.30 (m, 3H, CH_{Ar}), 4.25 (br. s, 2H, NH₂), 2.26 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.12, 148.78, 138.65, 134.59, 131.54 (q, ²J_{CF} = 32.2 Hz, *C*_{ipso}-CF₃), 123.88 (q, ¹J_{CF} = 272.8 Hz, *C*F₃), 131.02, 129.74, 129.59, 127.68, 124.52 (dd, *J*_{CF} = 7.6 Hz, *J*_{CF} = 3.7 Hz), 123.61, 122.75 (dd, *J*_{CF} = 7.1 Hz, *J*_{CF} = 3.4 Hz), 83.50, 13.14, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -62.09 (CF₃), MS (GC, 70 eV): *m/z* = 397 (M⁺, 40%), 317 (100), 276 (13), 131 (19), 119 (36), 77 (53), HRMS (TOF MS ES+): calcd for C₁₇H₁₅F₃N₃Se (M + H)⁺ 398.0383, found 398.0392.

4-(4-(trifluoromethyl)phenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5e): dark brown viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.58 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.1 Hz, CH_{Ar}), 7.51 - 7.42 (m, 4H, CH_{Ar}), 7.35 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.30 (m, 2H, CH_{Ar}), 4.25 (br. s, 2H, NH₂), 2.25 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.13, 148.78, 138.69, 138.62, 129.70, 128.07 (q, ²J_{CF} = 32.5 Hz, *C*_{ipso}-CF₃), 127.62, 125.94 (dd, *J*_{CF} = 7.1 Hz, *J*_{CF} = 3.4 Hz), 124.28 (q, ¹J_{CF} = 271.9 Hz, *C*F₃), 123.49, 83.23, 77.16, 13.10, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -61.77 (CF₃), MS (GC, 70 eV): *m/z* = 397 (M⁺, 43%), 317 (100), 276 (13), 131 (16), 119 (33), 77 (48), HRMS (TOF MS ES+): calcd for C₁₇H₁₅F₃N₃Se (M + H)⁺ 398.0383, found 398.0393.

4-(2-fluorophenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5f): light brown powder, mp. 97-99 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.55 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.44 (t, 2H, ³J = 7.9 Hz, CH_{Ar}), 7.31 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.16 - 7.09 (m, 1H, CH_{Ar}), 7.02 - 6.94 (m, 3H, CH_{Ar}), 4.28 (br. s, 2H, NH₂), 2.24 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 160.15 (d, ¹J_{CF} = 241.1 Hz, *C*_{ipso}-F), 153.30, 148.93, 138.57, 129.52, 129.49 (d, *J*_{CF} = 7.3 Hz), 127.59 (d, *J*_{CF} = 7.3 Hz), 127.36, 124.88 (d, *J*_{CF} = 3.0 Hz), 123.30, 119.52 (d, ²J_{CF} = 22.2 Hz), 115.20 (d, ²J_{CF} = 22.1 Hz), 81.63, 12.99, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -107.38 (CF), MS (GC, 70 eV): *m/z* = 347 (M⁺, 39%), 267 (100), 250 (9), 226 (10), 131 (16), 119 (30), 77 (51), HRMS (TOF MS ES+): calcd for C₁₆H₁₅FN₃Se (M + H)⁺ 348.0415, found 348.0424.

4-(3-fluorophenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5g): black viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.59 (d, 2H, ³J = 7.6 Hz, CH_{Ar}), 7.48 (t, 2H, ³J = 7.9 Hz, CH_{Ar}), 7.35 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.17 (td, 1H, ³J = 8.0 Hz, ³J = 5.9 Hz, CH_{Ar}), 7.01 (d, 1H, ³J = 7.8 Hz, CH_{Ar}), 6.92 - 6.87 (m, 1H, CH_{Ar}), 6.84 (td, 1H, ³J = 8.4 Hz, ³J = 2.4 Hz), 4.23 (br. s, 2H, NH₂), 2.26 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.33 (d, ¹J_{CF} = 249.2 Hz, C_{ipso}-F), 153.11, 148.69, 138.65, 135.37 (d, J_{CF} = 6.2 Hz), 130.42 (d, J_{CF} = 8.0 Hz), 129.66, 127.55, 123.51, 123.35 (d, J_{CF} = 2.8 Hz), 114.68 (d, ²J_{CF} = 23.3 Hz), 112.84 (d, ²J_{CF} = 21.4 Hz), 83.80, 13.11, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -111.27 (CF), MS (GC, 70 eV): m/z = 347 (M⁺, 35%), 267 (100), 226 (13), 131 (15), 119 (30), 77 (49), HRMS (TOF MS ES+): calcd for C₁₆H₁₅FN₃Se (M + H)⁺ 348.0415, found 348.0422.

4-(4-fluorophenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5h): light brown viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.58 (dd, 2H, ³*J* = 8.5 Hz, ⁴*J* = 1.2 Hz, CH_{Ar}), 7.50 - 7.45 (m, 2H, CH_{Ar}), 7.34 (t, 1H, ³*J* = 7.4 Hz, CH_{Ar}), 7.22 - 7.17 (m, 2H, CH_{Ar}), 6.93 (t, 2H, ³*J* = 8.8 Hz, CH_{Ar}), 4.24 (br. s, 2H, NH₂), 2.27 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 161.76 (d, ¹*J*_{CF} = 244.8 Hz, *C*_{ipso}-F), 153.04, 148.57, 138.73, 129.97 (d, *J*_{CF} = 7.6 Hz), 129.70, 127.55, 127.32 (d, *J*_{CF} = 2.9 Hz), 123.49, 116.42 (d, ²*J*_{CF} = 21.7 Hz), 84.99, 13.20, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -116.26 (CF), MS (GC, 70 eV): *m/z* = 347 (M⁺, 31%), 267 (100), 226 (14), 131 (12), 119 (25), 77 (45), 66 (14), HRMS (TOF MS ES+): calcd for C₁₆H₁₅FN₃Se (M + H)⁺ 348.0415, found 348.0426.

4-(2-bromophenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5i): green crystals, mp. 109-110 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.60 (dd, 2H, ³*J* = 8.5 Hz, ⁴*J* = 1.1 Hz, CH_{Ar}), 7.53 - 7.44 (m, 3H, CH_{Ar}), 7.36 (t, 1H, ³*J* = 7.4 Hz, CH_{Ar}), 7.13 (td, 1H, ³*J* = 7.8 Hz, ⁴*J* = 1.3 Hz, CH_{Ar}), 7.03 (td, 1H, ³*J* = 7.6 Hz, ⁴*J* = 1.6 Hz, CH_{Ar}), 6.85 (dd, 1H, ³*J* = 7.9 Hz, ⁴*J* = 1.6 Hz, CH_{Ar}), 4.25 (br. s, 2H, NH₂), 2.26 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.55, 149.01, 138.61, 135.48, 132.90, 129.77, 128.03, 127.95, 127.70, 127.08, 123.59, 122.16, 84.35, 13.14, MS (GC, 70 eV): *m/z* = 407 (M⁺, 40), 329 (46), 327 (46), 247 (30), 233 (11), 156 (12), 131 (35), 119 (56), 104 (14), 77 (100), 66 (28), 51 (24), 39 (17), HRMS (TOF MS ES+): calcd for C₁₆H₁₅BrN₃Se (M + H)⁺ 407.9615, found 407.9617.

4-(4-chlorophenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5j): dark brown viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.59 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.1 Hz, CH_{Ar}), 7.50 (t, 2H, ³J = 7.9 Hz, CH_{Ar}), 7.37 (t, 1H, ³J = 7.4 Hz, CH_{Ar}), 7.21 - 7.13 (m, 4H, CH_{Ar}), 4.24 (br. s, 2H, NH₂), 2.27 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.04, 148.63, 138.64, 131.91, 131.30, 129.67, 129.33, 129.27, 127.54, 123.45, 84.22, 13.14, MS (GC, 70 eV): *m/z* = 363 (M⁺, 29%), 283 (100), 247 (12), 131 (14), 119 (32), 77 (61), 66 (18), 51 (15), 39 (11), HRMS (TOF MS ES+): calcd for C₁₆H₁₅ClN₃Se (M + H)⁺ 364.0120, found 364.0122.

4-(3-nitrophenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5k): green powder, mp. 150-151 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.08 (t, 1H, ⁴J = 1.9 Hz, CH_{Ar}), 8.00 (dd, 1H, ³J = 8.0 Hz, ⁴J = 2.2 Hz, ⁴J = 0.9 Hz, CH_{Ar}), 7.60 (dd, 2H, ³J = 8.5 Hz, ⁴J = 1.1 Hz, CH_{Ar}), 7.54 - 7.47 (m, 3H, CH_{Ar}), 7.38 (t, 2H, ³J = 8.0 Hz, CH_{Ar}), 4.28 (br. s, 2H, NH₂), 2.27 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 153.05, 148.94, 148.89, 138.46, 135.88, 133.64, 129.93, 129.86, 127.95, 123.79, 122.68, 120.99, 83.21, 13.17, MS (GC, 70 eV): *m/z* = 374 (M⁺, 40%), 294 (100), 247 (17), 131 (30), 119 (52), 77 (70), 66 (16), 51 (16), 39 (11), HRMS (TOF MS ES+): calcd for C₁₆H₁₅N₄O₂Se (M + H)⁺ 375.0360, found 375.0365.

4-(4-methoxyphenylselanyl)-3-methyl-1-phenyl-1H-pyrazol-5-amine (5l): dark yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.58 (dd, 2H, ³*J* = 8.5 Hz, ⁴*J* = 1.1 Hz, CH_{Ar}), 7.48 (t, 2H, ³*J* = 7.9 Hz, CH_{Ar}), 7.34 (t, 1H, ³*J* = 7.4 Hz, CH_{Ar}), 7.21 (d, 2H, ³*J* = 8.9 Hz, CH_{Ar}), 6.79 (d, 2H, ³*J* = 8.8 Hz, CH_{Ar}), 4.23 (br. s, 2H, NH₂), 3.76 (s, 3H, OCH₃), 2.29 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 158.63, 153.03, 148.45, 138.77, 130.45, 129.72, 127.52, 123.53, 122.79, 115.14, 85.95, 55.46, 13.26, MS (GC, 70 eV): *m/z* = 359 (M⁺, 19%), 279 (100), 264 (35), 119 (20), 77 (42), 66 (10), HRMS (TOF MS ES+): calcd for C₁₇H₁₈N₃OSe (M + H)⁺ 360.0615, found 360.0631.

methyl 2-[(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)selanyl]benzoate (5m): dark green crystals, mp. 160-163 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.07 (dd, 1H, ³J = 7.8 Hz, ⁴J = 1.4 Hz, CH_{Ar}), 7.61 (dd, 2H, ³J = 8.4 Hz, ⁴J = 1.0 Hz, CH_{Ar}), 7.48 (t, 2H, ³J = 7.9 Hz, CH_{Ar}), 7.36 - 7.28 (m, 2H, CH_{Ar}), 7.22 - 7.17 (m, 1H, CH_{Ar}), 7.13 (dd, 1H, ³J = 8.9 Hz, ⁴J = 0.8 Hz, CH_{Ar}), 4.21 (br. s, 2H, NH₂), 3.97 (s, 3H, COOCH₃), 2.22 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 167.64, 153.82, 149.09, 139.31, 138.82, 133.00, 131.82, 129.66, 127.70, 127.42, 125.09, 123.46, 85.23, 52.43, 13.19, MS (GC, 70 eV): *m/z* = 387 (M⁺, 100%), 307 (64), 275 (75), 252 (22), 215 (20), 184 (14), 172 (43), 157 (12), 131 (44), 119 (61), 104 (17), 91 (16), 77 (95), 66 (21), 51 (17), 39 (11), HRMS (TOF MS ES+): calcd for C₁₈H₁₈N₃O₂Se (M + H)⁺ 388.0564, found 388.0578.

5-(4-fluorophenylselanyl)-1-[(4-methylphenyl)methyl]-4-nitro-1H-imidazole (6): light yellow crystals, mp. 114-115 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.55 (s, 1H, C(2)-imidazole), 7.36 - 7.28 (m, 2H, CH_{Ar}), 7.12 (d, 2H, ³*J* = 7.9 Hz, CH_{Ar}), 6.95 - 6.88 (m, 4H, CH_{Ar}), 5.17 (s, 2H, CH₂), 2.34 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.06 (d, ¹*J*_{CF} = 249.6 Hz, *C*_{ipso}-F), 150.69, 138.99, 137.88, 134.90 (d, *J*_{CF} = 8.1 Hz), 131.05, 130.02, 127.55, 123.03 (d, *J*_{CF} = 3.5 Hz), 117.80, 117.07 (d, ²*J*_{CF} = 22.0 Hz), 51.06, 21.23, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -111.27 (CF), MS (GC, 70 eV): *m/z* = 391 (M⁺, 8%), 280 (3), 105 (100), 79 (14), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0313.

5-(p-tolylselanyl)-4-nitro-1-phenethyl-1H-imidazole (7a): yellow powder, mp. 94-95 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.32 (d, 2H, ³J = 8.1 Hz, CH_{Ar}), 7.30 - 7.22 (m, 4H, CH_{Ar}), 7.09 (d, 2H, ³J = 8.0 Hz CH_{Ar}), 6.95 (d, 2H, ³J = 6.4 Hz, CH_{Ar}), 4.22 (t, 2H, ³J = 7.1 Hz, CH₂), 2.90 (t, 2H, ³J = 7.1 Hz, CH₂), 2.31 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 150.46, 139.01, 137.73, 136.32, 132.39, 130.85, 129.16, 128.74, 127.55, 125.02, 48.99, 36.86, 21.27, MS (GC, 70 eV): *m/z* = 387 (M⁺, 8%), 280 (27), 105 (100), 91 (33), 79 (23), HRMS (TOF MS ES+): calcd for C₁₈H₁₈N₃O₂Se (M + H)⁺ 388.0564, found 388.0566.

5-(2-fluorophenylselanyl)-4-nitro-1-phenethyl-1H-imidazole (7b): yellow powder, mp. 100-101 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.33 (s, 1H, C(2)-imidazole), 7.33 - 7.22 (m, 5H, CH_{Ar}), 7.10 - 7.03 (m, 2H, CH_{Ar}), 7.02 - 6.97 (m, 2H, CH_{Ar}), 4.37 (t, 2H, ³J = 7.0 Hz, CH₂), 2.97 (t, 2H, ³J = 7.0 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 161.05 (d, ¹J_{CF} = 244.6 Hz, C_{ipso} -F), 150.96, 137.79, 136.21, 133.89, 130.84 (d, J_{CF} = 7.7 Hz), 129.18, 128.77, 127.60, 125.56 (d, J_{CF} = 3.3 Hz), 116.17 (d, ²J_{CF} = 22.7 Hz), 115.96, 115.64 (d, ²J_{CF} = 21.5 Hz), 48.98, 37.28, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -103.60 (CF), MS (GC, 70 eV): m/z = 391 (M⁺, 11%), 280 (18), 105 (100), 91 (48), 79 (29), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0316.

5-(3-fluorophenylselanyl)-4-nitro-1-phenethyl-1H-imidazole (7c): yellow powder, mp. 71-72 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.35 (s, 1H, C(2)-imidazole), 7.30 - 7.21 (m, 4H, CH_{Ar}), 7.10 (d, 1H, ³J = 7.8 Hz, CH_{Ar}), 7.02 (d, 1H, ³J = 8.3 Hz, CH_{Ar}), 6.99 - 6.94 (m, 3H, CH_{Ar}), 4.29 (t, 2H, ³J = 7.0 Hz, CH₂), 2.94 (t, 2H, ³J = 7.0 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.00 (d, ¹J_{CF} = 251.6 Hz, *C*_{ipso}-F), 150.96, 138.04, 136.05, 131.26 (d, *J*_{CF} = 8.1 Hz), 130.69 (d, *J*_{CF} = 6.9 Hz), 129.15, 128.67, 127.58, 126.66 (d, *J*_{CF} = 3.1 Hz), 118.06 (d, ²J_{CF} = 23.1 Hz), 116.30, 115.46 (d, ²J_{CF} = 21.1 Hz), 48.99, 37.02, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -109.35 (CF), MS (GC, 70 eV): *m/z* = 391 (M⁺, 12%), 280 (14), 105 (100), 91 (49), 79 (31), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0321.

5-(4-fluorophenylselanyl)-4-nitro-1-phenethyl-1H-imidazole (7d): yellow powder, mp. 105-106 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.45 - 7.37 (m, 2H, CH_{Ar}), 7.29 (s, 1H, C(2)-imidazole), 7.28 - 7.22 (m, 3H, CH_{Ar}), 7.01 - 6.93 (m, 4H, CH_{Ar}), 4.29 (t, 2H, ³J = 7.0 Hz, CH₂), 2.94 (t, 2H, ³J = 7.0 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.01 (d, ¹J_{CF} = 249.7 Hz, C_{ipso} -F), 150.50, 137.75, 136.12, 134.45 (d, J_{CF} = 8.1 Hz), 129.17, 128.68, 127.59, 123.31 (d, J_{CF} = 3.3 Hz), 117.63, 117.25 (d, ²J_{CF} = 22.0 Hz), 48.90, 36.99, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -111.13 (CF), MS (GC, 70 eV): *m/z* = 391 (M⁺, 7%), 280 (13), 105 (100), 91 (42), 79 (25), HRMS (TOF MS ES+): calcd for C₁₇H₁₅FN₃O₂Se (M + H)⁺ 392.0314, found 392.0318.

5-(2-fluorophenylselanyl)-4-nitro-1-phenylpropyl-1H-imidazole (8): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.78 (br. s. 1H, C(2)-imidazole), 7.30 - 7.19 (m, 5H, CH_{Ar}), 7.10 - 7.02 (m, 4H, CH_{Ar}), 4.08 (t, 2H, ³*J* = 7.4 Hz, CH₂), 2.60 (t, 2H, ³*J* = 7.4 Hz, CH₂), 2.06 (quint, 2H, ³*J* = 7.4 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 160.94 (d, ¹*J*_{CF} = 244.9 Hz, C_{ipso} -F), 139.54, 133.66, 130.74 (d, *J*_{CF} = 7.7 Hz), 128.74, 128.24, 126.58, 125.50 (d, *J*_{CF} = 3.2 Hz), 116.11 (d, ²*J*_{CF} = 22.5 Hz), 115.47 (d, ²*J*_{CF} = 21.4 Hz), 47.36, 32.50, 31.87, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -103.55 (CF), MS (GC, 70 eV): *m/z* = 405 (M⁺, 17%), 294 (13), 230 (26), 184 (38), 117 (68), 91 (100), HRMS (TOF MS ES+): calcd for C₁₈H₁₇FN₃O₂Se (M + H)⁺ 406.0470, found 406.0469.

5-(2-fluorophenylselanyl)-2-methyl-4-nitro-1-phenethyl-1H-imidazole (9a): dark yellow powder, mp. 85-86 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.33 - 7.23 (m, 5H, CH_{Ar}), 7.05 (q, 2H, ³*J* = 7.8 Hz, CH_{Ar}), 7.01 - 6.98 (m, 2H, CH_{Ar}), 4.31 (t, 2H, ³*J* = 7.1 Hz, CH₂), 2.93 (t, 2H, ³*J* = 7.1 Hz, CH₂), 2.21 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 160.92 (d, ¹*J*_{CF} = 244.1 Hz, *C*_{ipso}-F), 150.07, 147.01, 136.40, 133.55, 133.54 (d, *J* = 1.9 Hz), 130.57 (d, *J*_{CF} = 7.7 Hz), 129.19, 128.94, 127.62, 125.52 (d, *J*_{CF} = 3.3 Hz), 116.10 (d, ²*J*_{CF} = 22.3 Hz), 115.31, 47.96, 36.93, 13.96, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -103.97 (CF), MS (GC, 70 eV): *m/z* = 405 (M⁺, 14%), 294 (12), 230 (12), 213 (12), 184 (8), 105 (100), 91 (43), 79 (30), HRMS (TOF MS ES+): calcd for C₁₈H₁₇FN₃O₂Se (M + H)⁺ 406.0470, found 406.0475.

5-(4-fluorophenylselanyl)-2-methyl-4-nitro-1-phenethyl-1H-imidazole (9b): yellow powder, mp. 108-109 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.43 (dd, 2H, ³J = 8.7 Hz, ³J = 5.2 Hz, CH_{Ar}), 7.32 - 7.26 (m, 3H, CH_{Ar}), 6.98 (m, 4H, CH_{Ar}), 4.24 (t, 2H, ³J = 7.1 Hz, CH₂), 2.90 (t, 2H, ³J = 7.1 Hz, CH₂), 2.16 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 162.98 (d, ¹J_{CF} = 249.1 Hz, *C*_{ipso}-F), 149.67, 146.94, 136.36, 134.11 (d, *J*_{CF} = 8.1 Hz), 129.23, 128.85, 127.66, 123.86 (d, *J*_{CF} = 2.8 Hz), 117.24 (d, ²J_{CF} = 22.0 Hz), 116.96, 47.87, 36.74, 13.93, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -111.54 (CF), MS (GC, 70 eV): *m/z* = 405 (M⁺, 11%), 294 (18), 230 (10), 213 (10), 105 (100), 91 (36), 79 (26), HRMS (TOF MS ES+): calcd for C₁₈H₁₇FN₃O₂Se (M + H)⁺ 406.0470, found 406.0466.

2-(3,5-bis(trifluoromethyl)phenylselanyl)-1-[(4-methylphenyl)methyl]-1H-benzo[d]imidazole (10a): yellow powder, mp. 94-95 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.86 - 7.83 (m, 3H, CH_{Ar}), 7.67 (s, 1H, CH_{Ar}), 7.36 - 7.29 (m, 3H, CH_{Ar}), 6.96 (d, H, ³*J* = 7.9 Hz, CH_{Ar}), 6.83 (d, H, ³*J* = 7.9 Hz, CH_{Ar}), 5.48 (s, 2H, CH₂), 2.24 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 141.91, 137.82, 136.11, 132.41, 132.25 - 132.13 (m, *C*_{ipso}-CF₃), 131.00, 129.53, 126.26, 124.16, 122.98, 122.64 (q, ¹*J*_{CF} = 272.9 Hz, *C*F₃), 121.72 (m), 120.18, 110.27, 48.90, 20.92. ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -62.37 (CF₃), MS (GC, 70 eV): m/z = 514 (M⁺, 8%), 433 (3), 317 (11), 105 (100), 79 (12), HRMS (TOF MS ES+): calcd for C₂₃H₁₇F₆N₂Se (M + H)⁺ 515.0461, found 515.0462.

2-(3-(trifluoromethoxy)phenylselanyl)-1-[(4-methylphenyl)methyl]-1H-benzo[d]imidazole (10b): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.85 - 7.83 (m, 1H, CH_{Ar}), 7.40 (d, 1H, ³J = 7.9 Hz, CH_{Ar}), 7.34 (s, 1H, CH_{Ar}), 7.30 - 7.25 (m, 3H, CH_{Ar}), 7.22 (t, 1H, ³J = 8.0 Hz, CH_{Ar}), 7.08 (d, 1H, ³J = 8.3 Hz, CH_{Ar}), 7.02 (d, 2H, ³J = 7.9 Hz, CH_{Ar}), 6.89 (d, 2H, ³J = 8.0 Hz, CH_{Ar}), 5.44 (s, 2H, CH₂), 2.28 (s, 3H, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 149.53, 144.01, 143.15, 137.82, 136.04, 132.62, 130.67, 130.64, 130.11, 129.58, 126.58, 124.71, 123.86, 122.81, 120.40 (q, J_{CF} = 257.9 Hz, OCF₃), 120.35, 120.14, 110.48, 49.08, 21.12, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -57.15 (CF₃), MS (GC, 70 eV): m/z = 462 (M⁺, 9%), 382 (8), 265 (13), 105 (100), 79 (13), HRMS (TOF MS ES+): calcd for C₂₂H₁₈F₃N₂OSe (M + H)⁺ 463.0536, found 463.0557.

5-(4-fluorophenylselanyl)-1-phenethyl-1H-1,2,4-triazole (11): yellow powder, mp. 87-88 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.97 (s, 1H, C(3)-triazole), 7.45 - 7.41 (m, 2H, CH_{Ar}), 7.28 - 7.22 (m, 3H, CH_{Ar}), 7.04 - 7.02 (m, 2H, CH_{Ar}), 7.00 - 6.95 (m, 2H, CH_{Ar}), 4.44 (t, 2H, ³J = 7.2 Hz, CH₂), 3.10 (t, 2H, ³J = 7.2 Hz, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 163.16 (d, ¹J_{CF} = 249.4 Hz, C_{ipso} -F), 152.78, 137.16, 135.80 (d, J_{CF} = 8.2 Hz), 128.91, 128.89, 127.14, 121.67 (d, J_{CF} = 3.3 Hz), 117.02 (d, ²J_{CF} = 21.9 Hz), 51.24, 36.32, ¹⁹F{¹H} NMR (188.34 MHz, CDCl₃): δ (ppm): -111.33 (CF), MS (GC, 70 eV): *m/z* = 347 (M⁺, 37%), 243 (100), 216 (14), 175 (23), 163 (26), 136 (19), 122 (18), 104 (70), 91 (82), 77 (32), 65 (30), 55 (54), HRMS (TOF MS ES+): calcd for C₁₆H₁₅FN₃Se (M + H)⁺ 348.0415, found 348.0420.

3-(4-ethylphenylselanyl)-4H-chromen-4-one (12a): yellow viscous oil, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.24 (dd, 1H, ³*J* = 8.3 Hz, ⁴*J* = 1.6 Hz, CH_{Ar}), 7.79 (s, 1H, CH_{Ar}), 7.70 - 7.62 (m, 1H, CH_{Ar}), 7.55 (d, 2H, ³*J* = 8.1 Hz, CH_{Ar}), 7.44 - 7.38 (m, 2H, CH_{Ar}), 7.15 (d, 2H, ³*J* = 8.1 Hz, CH_{Ar}), 2.63 (q, 2H, ³*J* = 7.6 Hz, CH₂), 1.22 (t, 3H, ³*J* = 7.6 Hz, CH₃), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 175.43, 156.47, 155.03, 144.92, 134.78, 133.88, 129.39, 126.45, 125.60, 124.25, 123.17, 118.68, 118.16, 28.68, 15.55, MS (GC, 70 eV): *m/z* = 330 (M⁺, 46%), 279 (15), 249 (48), 235 (38), 210 (23), 195 (17), 167 (45), 149 (100), 115 (48), 105 (16), 89 (16), 71 (25), 57 (33), 43 (23), HRMS (TOF MS ES+): calcd for C₁₇H₁₅O₂Se (M + H)⁺ 331.0237, found 331.0245.

3-(4-fluorophenylselanyl)-4H-chromen-4-one (12b): brown powder, mp. 84-85 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm): 8.23 (dd, 1H, ³*J* = 8.1 Hz, ⁴*J* = 1.4 Hz, CH_{Ar}), 7.89 (s, 1H, CH_{Ar}), 7.67 (ddd, 1H, ³*J* = 8.7 Hz, ³*J* = 7.2 Hz, ⁴*J* = 1.6 Hz, CH_{Ar}), 7.62 (dd, 2H, ³*J* = 8.8 Hz, ³*J* = 5.4 Hz, CH_{Ar}), 7.47 - 7.37 (m, 2H, CH_{Ar}), 7.00 (t, 2H, ³*J* = 8.7 Hz, CH_{Ar}), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 175.31, 163.09 (d, ¹*J*_{CF} = 248.5 Hz, *C*_{Ipso}-F), 156.47, 155.68, 136.55 (d, *J*_{CF} = 8.1 Hz), 134.04, 126.46, 125.76, 123.26, 122.64 (d, *J*_{CF} = 3.4 Hz), 118.21, 118.17,

116.90 (d, ${}^{2}J_{CF}$ = 21.7 Hz), ${}^{19}F{}^{1}H$ NMR (188.34 MHz, CDCl₃): δ (ppm): -112.24 (CF), MS (GC, 70 eV): m/z = 320 (M⁺, 79%), 239 (56), 200 (51), 183 (16), 120 (100), 92 (47), 75 (16), 63 (25), HRMS (TOF MS ES+): calcd for C₁₅H₁₀FO₂Se (M + H)⁺ 320.9830, found 320.9837.

3-*nitro-9H-pyrazolo*[5,1-*b*][1,3]*benzoselenazine* (13*a*): green powder, mp. 195-196 °C, ¹H NMR (500 MHz, CDCl₃): 8.18 (s, 1H, C(2)), 7.55 - 7.53 (m, 1H, CH_{Ar}), 7.37 - 7.34 (m, 3H, CH_{Ar}), 5.27 (s, 2H, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 136.55, 131.06, 130.33, 129.43, 129.05, 128.94, 128.37, 125.09, 53.97, MS (GC, 70 eV): *m/z* = 281 (M⁺, 100%), 235 (10), 206 (10), 169 (22), 155 (44), 126 (20), 115 (33), 105 (17), 89 (32), 77 (14), 63 (17), HRMS (TOF MS ES+): calcd for C₁₀H₈N₃O₂Se (M + H)⁺ 281.9782, found 281.9785.

3-nitro-9H-imidazo[5,1-b][1,3]benzoselenazine (13b): yellow powder, mp. 228-229 °C, ¹H NMR (500 MHz, DMSO-d₆): 8.16 (s, 1H, C(2)), 7.78 - 7.75 (m, 1H, CH_{Ar}), 7.52 - 7.50 (m, 1H, CH_{Ar}), 7.42 - 7.37 (m, 2H, CH_{Ar}), 5.31 (s, 2H, CH₂), ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm): 144.87, 138.03, 131.33, 129.55, 129.13, 129.01, 128.06, 125.78, 123.28, 48.85, MS (GC, 70 eV): *m*/*z* = 281 (M⁺, 100%), 235 (20), 208 (58), 196 (10), 181 (23), 169 (54), 155 (17), 128 (18), 116 (17), 89 (50), 77 (11), 63 (21), HRMS (TOF MS ES+): calcd for C₁₀H₈N₃O₂Se (M + H)⁺ 281.9782, found 281.9785.

12H-benzimidazo[2,1-b][1,3]benzoselenazine (13c): colorless crystals, mp. 174-175 °C, ¹H NMR (500 MHz, CDCl₃): 7.70 (s, 1H, CH_{Ar}), 7.46 - 7.21 (m, 7H, CH_{Ar}), 5.09 (s, 2H, CH₂), ¹³C NMR (126 MHz, CDCl₃): δ (ppm): 144.45, 143.24, 135.03, 131.96, 129.81, 128.82, 128.42, 127.47, 126.94, 122.32, 122.10, 118.81, 108.48, 47.92, MS (GC, 70 eV): *m/z* = 286 (M⁺, 41%), 206 (100), 103 (10), 77 (12), HRMS (TOF MS ES+): calcd for C₁₄H₁₁N₂Se (M + H)⁺ 287.0087, found 287.0092.

References

- 1 V. O. Iaroshenko, A. Gevorgyan, O. Davydova, A. Villinger and P. Langer, *J. Org. Chem.*, 2014, **79**, 2906–2915.
- 2 Y. P. Ustimenko, A. M. Agafontsev, V. Y. Komarov and A. V. Tkachev, *Mendeleev Commun.*, 2018, **28**, 584–586.
- 3 V. O. Iaroshenko, A. Gevorgyan, S. Mkrtchyan, K. Arakelyan, T. Grigoryan, J. Yedoyan, A. Villinger and P. Langer, *J. Org. Chem.*, 2015, **80**, 2103–2119.
- 4 E. Apohan, U. Yilmaz, O. Yilmaz, A. Serindag, H. Küçükbay, O. Yesilada and Y. Baran, *J. Organomet. Chem.*, 2017, **828**, 52–58.
- 5 C. Ding, Y. Yu, Q. Yu, Z. Xie, Y. Zhou, J. Zhou, G. Liang and Z. Song, *ChemCatChem*, 2018, **10**, 5397–5401.
- 6 C. P. Owen, I. Shahid, M. S. Olusanjo, C. H. Patel, S. Dhanani and S. Ahmed, J. Steroid Biochem. Mol. Biol., 2008, **111**, 117–127.
- 7 A. M. Linsenmeier, C. M. Williams and S. Bräse, *J. Org. Chem.*, 2011, **76**, 9127–9132.

(C) Copies ¹H and ¹³C NMR spectra.

Comment	s. mkrtchyan mj-1011031H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Spectral Width 12335.5

Spectral Size 65536

Number of Scans24Spectrometer Frequency500.13	comment
Spectrometer Frequency 500.13	Number of Scans
	Spectrometer Frequency
Spectral Width 12335.5	Spectral Width

Spectral Size 65536

35

Compound sm13

Comment	s. mkrtchyan =mja-140-crs1=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

- Spectrometer Frequency 125.76 Spectral Width 36057.7
- Spectral Size 65536

- Number of Scans 16
- Spectrometer Frequency500.13Spectral Width12335.5
- Spectral Size 65536

Compound 1c

Spectral Size 65536

Spectral Size

Spectral Size 65536

Compound 1i

Compound **5a** 7.535 7.535 7.535 7.536 7.536 7.536 7.536 7.536 7.536 7.536 7.536 7.536 7.536 7.520 7.536 7.536 7.536 7.536 7.536 7.536 7.536 7.536 7.550 7

s. mkrtychyan =mj-...-f3445=1H.stan CDCl3

Comment	s. mkrtychyan =mjf3445=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Comment	s. mkrtchyan =mjf4749=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Compound 2b

Number of Scans 24 Spectrometer Frequency 500.13

Spectral Width 12335.5

Spectrometer Frequency500.13Spectral Width12335.5

Spectral Size 65536

Compound **2f**

s. mkrtchyan =mj60=1H.stan CDCl3

Spectrometer Frequency 500.13

12335.5

65536

Spectral Width

69	
05	

Comment	s. mkrtychyan =mj-111-819=1H.stan CDCl3
Number of Scans	24

Spectrometer Frequency 500.13

Spectral Width 12335.5

Compound 3a

Comment	s. mkrtychyan =mj-112-1017=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Comment	s. mkrtychyan =mj-113=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Spectral Width 12335.5

Spectral Size 65536

Spectral Width 12335.5

Spectral Size 65536

Compound **5a**

Spectral Width 12335.5

Spectral Size 65536

Comment	s. mkrtchyan =mj-1-k1f2028=A-13C.stan CDCl3
Number of Scans	1024
Spectrometer Frequency	125.76
Spectral Width	36057.7
Spectral Size	65536

Spectral Size 65536

Compound 5j

s. mkrtchyan =mj-17-ki-f53593=1H.stan CDCl3

7.157 7.598 7.598 7.581 7.581 7.581 7.500 7.157 7.157 7.157

Comment	s. mkrtchyan =mj-17-ki-f53593=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Spectral Width 12336.0

Spectral Size 65536

Spectrometer Frequency500.13Spectral Width12335.5

Spectral Width12335.Spectral Size65536

Spectral Size 65536

Spectral Size 65536

Spectral Size 65536

Spectral Size 65536

Spectrometer Frequency 500.13

Spectral Width 12335.5

Spectral Size 65536

Spectral width 1233:

Spectral Size 65536

Spectrometer Frequency	500.13
Spectral Width	12335.5

Spectral Size 65536

Spectral Size 65536

Compound 12a

Comment	s. mkrtchyan =mj-33-3537=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Compound 12b

- Spectrometer Frequency500.13Spectral Width12335.5
- Spectral Size 65536

Spectral Size 65536

Compound 13c

5.090

s. mkrtchyan =mj-145-613=1H.stan CDCl3

Comment	s. mkrtchyan =mj-145-613=1H.stan CDCl3
Number of Scans	24
Spectrometer Frequency	500.13
Spectral Width	12335.5
Spectral Size	65536

Spectral Size 65536

(D) X-ray single crystal analysis of compounds 1c, 2f, 5b, 5d, 5f, 5i, 5k and 5m.

CCDC 1922898-1922905 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/structures</u>. Figures presenting molecular structures of all structurally determined compounds, tables containing crystals data and data refinement as well as details of X-ray diffraction experiments are given in SI file.

X-ray diffraction experimental details

Data for single crystals suitable for diffraction experiments of the compounds **1c**, **2f**, **5b**, **5d**, **5f**, **5i**, **5k** and **5m** were collected at room temperature on a Gemini A Ultra Diffractometer (Rigaku Oxford Diffraction) with mirror monochromated Mo/K α radiation ($\lambda = 0.71073$ Å). Data collection and data reduction were performed in the CrysAlisPro program [¹]. The empirical absorption corrections using spherical harmonics implemented in multi-scan scaling algorithm were applied. To solve and refine the structure OLEX-2 version 1.2 [²] with incorporated SHELXT [³] (direct methods) and SHELXL (the full-matrix least-squares technique) programs [⁴] was used. All non-hydrogen atoms were refined with anisotropic temperature factors. The H-atoms were placed in calculated positions with fixed isotropic thermal parameters ($U_{iso}(H) = 1.2 \times [U_{eq}(C)]$ or $1.5 \times [U_{eq}(C)]$ for aromatic or aliphatic carbon atoms, respectively). In **1c** symptoms of disorder were detected. For the most influenced fragments i.e. selene atom and nitro groups, two positions were considered with free occupancy factors that equalled to 0.79(2) for the major component at the final stage of the refinement. In **5d** the -CF₃ group showed rotational disorder and the final model contains two most probable position of the group with s.o.f. for major component refined to 0.624(14). Crystal data for the investigated compounds are collected in Tables S1a and S1b.

¹ CrysAlisPro 1.171.38.46, Rigaku Oxford Diffraction, 2015.

² O.V.Dolomanov, L.J. Bourhis, , R.J. Gildea, J.A.K. Howard, H. Puschmann, , J. Appl. Cryst. 2009, **42**, 339-341. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. http://dx.doi.org/10.1107/S0021889808042726

³ G. M. Sheldrick, Acta Cryst. 2015, A71, 3–8. SHELXT - Integrated space-group and crystal-structure determination. https://doi.org/10.1107/S2053273314026370

⁴ G. M. Sheldrick, Acta Cryst. 2015, C71, 3–8. Crystal structure refinement with SHELXL. https://doi.org/10.1107/S2053229614024218

Figure 1. Ortep⁵ drawings of molecular structures. The thermal ellipsoids are drawn with 30% probability. Only the labels for atoms heavier than carbon atom are given. In the cases where two crystallographically molecules were found the labels of the second molecule correspond to the first one and are given with suffix "a". Minor components of disordered groups are depicted with spheres of arbitrary radius.

Table S1a. Crystal data and data refinement for 1c, 2f, 5b and 5d

Compound	1c	2f	5b	5d
CCDC number	1922899	1922903	1922898	1922905
Empirical formula	$C_{19}H_{19}N_3O_2Se$	$C_{16}H_{13}BrN_4O_2Se$	$C_{17}H_{17}N_3Se$	$C_{17}H_{14}F_3N_3Se$
Formula weight	400.33	452.17	342.29	396.27
Temperature/K	293(2)	293(2)	293(2)	293(2)
Crystal system	monoclinic	triclinic	monoclinic	monoclinic
Space group	P2 ₁ /c	<i>P</i> -1	P2 ₁ /c	P2 ₁ /c
a/Å	4.8207(3)	7.8948(5)	12.5515(5)	5.7537(2)
b/Å	36.9783(15)	7.9369(6)	5.93199(19)	23.2453(8)
c/Å	10.4021(6)	31.3002(16)	21.5896(11)	12.4112(5)
α/°	90	83.404(5)	90	90
β/°	95.860(6)	89.627(5)	101.138(4)	90.937(4)
γ/°	90	60.612(7)	90	90
Volume/Å ³	1844.63(17)	1694.8(2)	1577.19(11)	1659.73(10)
Z	4	4	4	4
ρ _{calc} g/cm ³	1.442	1.772	1.442	1.586
µ/mm⁻¹	2.052	4.590	2.378	2.296
F(000)	816.0	888.0	696.0	792.0
Crystal size/mm ³	0.35 × 0.08 × 0.05	0.5 × 0.3 × 0.3	$0.7 \times 0.4 \times 0.2$	0.8 × 0.2 × 0.2
Radiation	ΜοΚα (λ = 0.71073 Å)			
20 range for data collection/°	6.612 to 62.856	6.562 to 62.636	6.616 to 54.994	6.566 to 50.992
Index ranges	$-6 \le h \le 7$,	$-11 \le h \le 10$,	$-15 \le h \le 16,$	$-6 \le h \le 6$,
	$-53 \le k \le 49,$	$-11 \le k \le 11,$	$-7 \le k \le 7$,	$-26 \le k \le 28,$
	<i>−</i> 14 ≤ <i>l</i> ≤ 14	–44 ≤ / ≤ 45	–27 ≤ l ≤ 24	–15 ≤ / ≤ 15
Reflections collected	25566	24857	14178	9856
Independent	5610	9838	3579	3036
reflections	[<i>R</i> _{int} = 0.0730]	[<i>R</i> _{int} = 0.0689]	[R _{int} = 0.0392]	$[R_{int} = 0.0249]$
Data/restraints/	5610/21/266	9838/0/433	3579/2/200	3036/103/254
parameters				
Goodness-of-fit on F ²	1.001	1.006	1.020	1.030
Final R indexes	$R_1 = 0.0516, wR_2 =$	$R_1 = 0.0604, wR_2 =$	$R_1 = 0.0365, wR_2 =$	$R_1 = 0.0304, wR_2 =$
[<i>l</i> >2 σ (<i>l</i>)]	0.0916	0.0631	0.0731	0.0670
Final R indexes	$R_1 = 0.1563, wR_2 =$	$R_1 = 0.1642, wR_2 =$	$R_1 = 0.0596, wR_2 =$	$R_1 = 0.0408, wR_2 =$

⁵ L. J. Farrugia, J. Appl. Cryst. 2012, 45, 849–854. WinGX and ORTEP for Windows: an update. https://doi.org/10.1107/S0021889812029111.

[all data]	0.1215	0.0860	0.0819	0.0711
Largest diff. peak/hole / e Å⁻³	0.28/-0.20	0.68/-0.56	0.37/-0.26	0.39/-0.38

Table S1a. Crystal data and data refinement for 5f, 5i, 5k and 5m

Compound	5f	5i	5k	5m
CCDC number	1922901	1922902	1922900	1922904
Empirical formula	$C_{16}H_{14}FN_3Se$	$C_{16}H_{14}BrN_3Se$	$C_{16}H_{14}N_4O_2Se$	C ₁₈ H ₁₇ N ₃ O ₂ Se
Formula weight	346.26	407.17	373.27	386.30
Temperature/K	293(2)	293(2)	293(2)	293(2)
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic
Space group	P-1	P2 ₁ /c	P2 ₁ /n	Pbca
a/Å	10.7344(4)	9.4439(4)	8.0441(3)	12.6478(10)
b/Å	11.4734(4)	26.1410(11)	16.3997(6)	10.1017(8)
c/Å	13.5667(5)	12.8829(4)	12.5446(5)	26.833(3)
α/°	92.850(3)	90	90	90
β/°	109.342(3)	91.719(3)	106.994(4)	90
γ/°	97.713(3)	90	90	90
Volume/Å ³	1554.36(10)	3179.0(2)	1582.61(10)	3428.2(5)
Z	4	8	4	8
ρ _{calc} g/cm ³	1.480	1.701	1.567	1.497
µ/mm⁻¹	2.422	4.872	2.387	2.206
F(000)	696.0	1600.0	752.0	1568.0
Crystal size/mm ³	0.42 × 0.36 × 0.28	$0.4 \times 0.1 \times 0.1$	$0.8 \times 0.6 \times 0.4$	0.28 × 0.26 × 0.08
Radiation	ΜοΚα (λ = 0.71073 Å)			
20 range for data collection/°	7.02 to 53.994	6.518 to 52.998	6.792 to 56.484	6.442 to 62.878
Index ranges	$-13 \le h \le 13,$	$-11 \le h \le 11$,	$-10 \le h \le 10$,	$-17 \le h \le 17$,
	$-14 \le k \le 14,$	$-32 \le k \le 32,$	$-21 \le k \le 21,$	$-9 \le k \le 14,$
	–17 ≤ / ≤ 17	-16≤/≤16	v16 ≤ <i>l</i> ≤ 16	–28 ≤ / ≤ 36
Reflections collected	35398	33276	29384	24626
Independent	6775	6587	3906	5243
reflections	$[R_{int} = 0.0432]$	[<i>R</i> _{int} = 0.0735]	[R _{int} = 0.0377]	$[R_{int} = 0.1042]$
Data/restraints/	6775/4/397	6587/4/397	3906/2/217	5243/0/220
parameters				
Goodness-of-fit on F ²	1.014	1.020	1.059	0.982
Final R indexes	$R_1 = 0.0407, wR_2 =$	$R_1 = 0.0403, wR_2 =$	$R_1 = 0.0262, wR_2$	$R_1 = 0.0537, wR_2 =$
[<i>l</i> >2 <i>σ</i> (<i>l</i>)]	0.0773	0.0647	= 0.0636	0.0992
Final R indexes	$R_1 = 0.0830, wR_2 =$	$R_1 = 0.0859, wR_2 =$	$R_1 = 0.0336, wR_2$	$R_1 = 0.1656, wR_2 =$

[all data]	0.0932	0.0772	= 0.0669	0.1373
Largest diff.	0.59/-0.51	0.42/-0.61	0.26/-0.32	0.65/-0.71
peak/hole / e A ⁻³				