Quantum chemical elucidation of the turn-on luminescence mechanism in two new Schiff bases as selective chemosensors of Zn²⁺: Synthesis, theory and bioimaging applications.

Jessica Berrones-Reyes, Blanca M. Muñoz-Flores, Arelly M. Cantón-Díaz, Manuel A. Treto-Suárez, Dayan Páez-Hernández, Eduardo Schott, Ximena Zarate,* and Víctor M. Jiménez-Pérez.*

Supplementary Information

Table S1 Singlet \rightarrow Singlet absorption transitions for the free sensors **A** and **B** and the coordination compounds.*

	CAM-B3LYP					B3LYP				
System	λ_a	F	Active MOs	Assignment	$\lambda_{\mathbf{a}}$	f	Active MOs	Assignment		
Α	293	0.159	H→L	ππ*	327	0.105	H→L	π - π^*		
	240	0.392	H-1→L	$\pi - \pi^*$	258	0.344	H-1→L	$\pi - \pi^*$		
A/Ni ²⁺	334	0.128	H→L	$\pi - \pi^*$	379	0.036	H→L	π - π^*		
	255	0.172	H-1→L	$\pi - \pi^*$	369	0.111	H-1→L	$\pi - \pi^*$		
A/Zn ²⁺	319	0.173	H→L	$\pi - \pi^*$	354	0.122	H→L	$\pi - \pi^*$		
	246	0.279	H-1→L	$\pi - \pi^*$	303	0.037	H-1→L	π - π^*		
В	278	0.182	H→L	$\pi - \pi^*$	303	0.126	H→L	$\pi - \pi^*$		
	232	0.341	H-1→L	$\pi - \pi^*$	242	0.348	H-1→L	$\pi - \pi^*$		
B/Ni ²⁺	323	0.159	H→L	$\pi - \pi^*$	368	0.057	H→L	$\pi - \pi^*$		
	250	0.121	H-1→L	$\pi - \pi^*$	300	0.008	H-1→L	$\pi-\pi^*$		
B/Zn ²⁺	306	0.264	H→L	$\pi - \pi^*$	336	0.138	H→L	$\pi - \pi^*$		
	241	0.185	H-1→L	$\pi - \pi^*$	284	0.022	H-1→L	$\pi - \pi^*$		

*λ_a: calculated absorption wavelength in nm *f*: oscillator strength

CAM-B3LYP						B3LYP				
System	λ_{e}	f	k _{rad}	τ	Assignme nt	λ _e	f	k _{rad}	τ	Assignment
A	391	0.020	2.9*10 ⁸	3.4*10 ⁻⁹	π-π*	510	0.009	4.2*10 ⁸	2.3*10 ⁻⁹	π - π^*
A/Ni ²⁺	377	0.006	4.7*10 ⁷	2.1*10 ⁻⁸	dNi-π	486	0.002	$2.0^{*}10^{6}$	5.0*10-7	dNi-π
A/Zn ²⁺	455	0.063	2.0*10 ⁷	3.2*10 ⁻⁸	$\pi - \pi^*$	498	0.055	2.0*10 ⁷	5.1*10 ⁻⁹	$\pi - \pi^*$
В	539	0.002	2.5*10 ⁸	4.0*10 ⁻⁹	π-π*	460	0.004	4.3*10 ⁸	2.3*10 ⁻⁹	$\pi - \pi^*$
B/Ni ²⁺	351	0.009	1.2*10 ⁷	8.1*10 ⁻⁸	dNi-π	441	0.003	1.7*10 ⁸	6.0*10 ⁻⁹	dNi-π
B/Zn ²⁺	373	0.026	1.0*10 ⁸	9.6*10 ⁻⁹	π - π^*	494	0.025	1.0*107	1.1*10 ⁻⁸	$\pi - \pi^*$

 $Table \, S2 \; {\rm Singlet} \rightarrow {\rm Singlet} \; {\rm emission} \; {\rm transitions} \; {\rm for} \; {\rm the} \; {\rm free} \; {\rm sensors} \; A \; {\rm and} \; B \; {\rm and} \; {\rm the} \; {\rm coordination} \; {\rm compounds}.^*$

 λ_e :calculated emission wavelength in nm

f:oscillator strength

k_{rad}: emission radiative rate in s⁻¹

t: emission radiative lifetime in s.

Figure S2. ¹³C-NMR (400 MHz, CD₃OD, 298 K) spectrum of compound A.

Figure S3. ¹H-NMR (400 MHz, CD₃OD, 298 K) spectrum of compound B.

Figure S4. ¹³C-NMR (400 MHz, CD₃OD, 298 K) spectrum of compound B

Figure S5. Mass spectrum of compound A.

Figure S6. Mass spectrum of compound B.