Supporting Information

Improved Photoelectric Performance of All-Inorganic Perovskite through Different Additives for Green Light-Emitting Diodes

Xianqi Yang, Huaimin Gu*, Shuti Li, Jihang Li, Hengzhi Shi, Jinyuan Zhang, Nana Liu, Zebing Liao, Wenzhu Xu, Yuan Tan

¹ Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou, Guangdong, China

*Corresponding authors. E-mail: guhm139@139.com

Figure S1. Grain size distribution of (a) the pure CsPbBr₃, (b) CsPbBr₃-PVP, (c) CsPbBr₃-PEO and (d) CsPbBr₃-PEO-PVP films.

Figure S2. (a) current density, (b) luminance, (c) CE, and (d) EQE versus voltage characteristics of the CsPbBr₃-PEO device with different PEO blending ratios.

Figure S3. (a) current density, (b) luminance, (c) CE, and (d) EQE versus voltage characteristics of the CsPbBr₃-PEO-PVP device with different PVP blending ratios.

Figure S4. The optimal brightness observed in the device fabricated with three different types of emissive layers.

Figure S5. Cross-sectional SEM image of CsPbBr₃-PEO-PVP (1:0.012:0.06) Perovskite LED device.

Figure S6. Stability of the Perovskite LED based on pure CsPbBr₃, CsPbBr₃-PEO (1:0.012), and CsPbBr₃-PEO-PVP (1:0.012:0.06) films at a bias of 7V.

Figure S7. The UPS results of the pure CsPbBr₃, CsPbBr₃-PEO (1:0.012), and CsPbBr₃-PEO-PVP (1:0.012:0.06) perovskite films.