Flower-like Bi₂S₃ nanostructures as highly efficient anode for all solid state lithium ion battery

(Electronic Supplementary Information)

Pooja Kumari^{a, b†}, Kamlendra Awasthi^b, Shivani Agarwal^c, Takayuki Ichikawa^{a, d}, Manoj Kumar^{b#}, Ankur Jain^{d*}

^aGraduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan ^bDepartment of Physics, Malaviya National Institute of Technology, Jaipur, Rajasthan-302017, India ^cDepartment of Physics, JECRC University, Jaipur, Rajasthan-303905, India ^dNatural Science Centre for Basic Research and Development, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.

#kmanujk@gmail.com. *ankur.j.ankur@gmail.com

Figure S1: First galvanostatic discharge-charge profile of bulk Bi₂S₃ – LiBH₄ composite anode material at 1C.

Figure S2: First galvanostatic discharge-charge profile of bulk Bi₂S₃ – LiBH₄ composite anode material at 0.5C.

Figure S3: First galvanostatic discharge-charge profile of bulk Bi₂S₃ – LiBH₄ composite anode material at 0.2C.

Figure S4: Cyclic performance of the nano Bi₂S₃-LiBH₄ composite anode material in the voltage range of 0.2-2.5V at 120°C temperature with the rate of 0.1C.

Figure S5: SEM images of nano Bi_2S_3 -LiBH₄ composite anode material after galvanostatic electrochemical discharging- charging in the voltage range of 0.2-2.5V (a) 0 cycles and (b) 13 cycles.

Figure S6: SEM images of nano Bi_2S_3 -LiBH₄ composite anode material after galvanostatic electrochemical discharging-charging in the voltage range of 0.2-1.5V (a) 0 cycles and (b) 50 cycles.