Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Design, synthesis and biological evaluation of 1,2,3-triazole based 2-aminobenzimidazoles as novel inhibitors of LasR dependent Quorum Sensing in *Pseudomonas aeruginosa*

Singireddi Srinivasarao,^[a] Adinarayana Nandikolla,^[a] Shashidhar Nizalapur,^[b] Tsz Tin Yu,^[b] Sravani Pulya,^[c] Balaram

Ghosh,^[c] Sankaranarayanan Murugesan,^[d] Naresh Kumar,^[b] and Kondapalli Venkata Gowri Chandra Sekhar*^[a]

^aDepartment of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad – 500078, Telangana, India.

^bSchool of Chemistry, UNSW Sydney, NSW 2052, Australia.

^cDepartment of Pharmacy, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500 078, Telangana, India.

^dMedicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, India.

Contents:		Page
1.	Materials and methods	S2
2.	General procedures and Spectral Data	S2
3.	Single Crystal data	S5
4.	¹ H and ¹³ C NMR spectra's	S 8
5.	Mass spectra's	S46

*Corresponding author

Tel.: +91 40 66303527 E-mail: kvgc@hyderabad.bits-pilani.ac.in; kvgcs.bits@gmail.com

Experimental section

1. Materials and methods

All chemical reagents and solvents are purchased from Aldrich, Alfa Aesar, Finar. The solvents and reagents were of LR grade. All the solvents were dried and distilled before use. Thin-layer chromatography (TLC) was carried out on aluminium-supported silica gel plates (Merck 60 F254) with visualization of components by UV light (254 nm). Column chromatography was carried out on silica gel (Merck 100-200 mesh). ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 101 MHz respectively using a Bruker AV 400 spectrometer (Bruker CO., Switzerland) in CDCl₃ and DMSO-*d6* solution with tetramethylsilane as the internal standard and chemical shift values (δ) were given in ppm. ¹H NMR spectra were recorded in CDCl₃ or DMSO-*d6*. The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. Melting points were determined on an electro thermal melting point apparatus (Stuart-SMP30) in open capillary tubes and are uncorrected. Elemental analyses were performed by ElementarAnalysensysteme GmbH vario MICRO cube CHN Analyzer. Mass spectra (ESI-MS) were recorded on Schimadzu MS/ESI mass spectrometer.

2. General Procedure and Spectral Data

N-(1H-benzo[d]imidazol-2-yl)-2-chloroacetamide (**3a**): A stirred solution of 1H-benzo[d]imidazol-2-amine (**2a**) (1 g, 7.51 mmol) and pyridine (1.51 mL, 18.76 mmol) in dichloromethane was cooled to 0 °C and chloroacetyl chloride (0.60 mL, 7.51 mmol) was added and stirred for 12h at rt. Once completion of the reaction, as indicated by TLC, the reaction mixture was washed with water and organic layer was dried over sodium sulphate, concentrated under reduced pressure and the crude residue was purified by column chromatography using 60-75% ethyl acetate in hexane as eluents to get compound **3a** (1.3 g, 83%) as White solid. ESI-MS: (*m/z*) calcd for C₉H₈ClN₃O: 209.63, found 210.15 (M+H)⁺. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.08 (s, 2H), 7.09-7.46 (m, 4H), 4.37 (s, 2H) ¹³C NMR (100 MHz, CDCl₃) 167.70, 147.43, 135.76, 121.98, 114.34, 43.92; Anal. calcd for C₁₆H₁₃ClN₂O: (%) C, 51.56; H, 3.85; Cl, 16.91; N, 20.04; O, 7.63Found: C, 51.61; H, 3.81; Cl, 16.94; N, 20.00; O, 7.59.

2-chloro-N-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)acetamide (**3b**): A stirred solution of 5,6-dimethyl-1H-benzo[d]imidazol-2amine (**2b**) (1 g, 6.21 mmol) and pyridine (1.25 mL, 15.52 mmol) in dichloromethane was cooled to 0 °C and chloroacetyl chloride (0.49 mL, 6.21 mmol) was added and stirred for 12 h at rt. Once completion of the reaction, as indicated by TLC, the reaction mixture was washed with water and organic layer was dried over sodium sulphate, concentrated under reduced pressure and the crude residue was purified by column chromatography using 60 % ethyl acetate in hexane as eluents to get compound **3b** (1.1 g, 75%) as White solid. ESI-MS: (*m/z*) calcd for C₁₁H₁₂ClN₃O: 237.69, found 238.20 (M+H)⁺. ¹H NMR (400 MHz, DMSO*d*₆) δ 12.07 (s, 2H), 7.16 (s, 2H), 4.38 (s, 2H), 2.25 (s, 6H) ¹³C NMR (100 MHz, CDCl₃) 167.49, 147.38, 135.37, 121.08, 113.99, 43.85, 20.07; Anal. calcd for C₁₁H₁₂ClN₃O: (%) C, 55.59; H, 5.09; Cl, 14.92; N, 17.68; O, 6.73 Found: C, 55.70; H, 5.01; Cl, 14.87; N, 17.68; O, 6.75.

N-(1H-benzo[d]imidazol-2-yl)-2-iodoacetamide (4a): KI (1.24 g, 7.46 mmol) was added to the stirred solution of compound **3a** (1.3 g, 6.22 mmol) in acetone:water (8:2 ratio, should get clear solution) and heated to 55 °C for 12 h. Once completion of the reaction, as indicated by TLC the reaction mixture, acetone was removed from the reaction mixture and washed with water and organic layer was dried over sodium sulphate, concentrated under reduced pressure and the crude residue was titurated with 3% dichlomethane in hexane to yield compound **4a** (1.5 g, 80%) as off-white solid. The solid compound was directly taken to next step without further purification. ESI-MS: (*m/z*) calcd for C₉H₈IN₃O: 301.08, found 300.15 (M+H). ¹H NMR (400 MHz, DMSO- d_6) δ 11.98 (s, 2H), 7.15-7.36 (m, 4H), 4.01 (s, 2H) ¹³C NMR (100 MHz, CDCl₃) 165.13, 147.42, 134.97, 121.87, 114.30, 29.04; Anal. calcd for C₉H₈IN₃O: (%) C, 35.90; H, 2.68; I, 42.15; N, 13.96; O, 5.31 Found: C, 35.97; H, 2.65; I, 42.18; N, 13.99; O, 5.28.

N-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-2-iodoacetamide (4b): KI (0.92 g, 5.56 mmol) was added to the stirred solution of compound **3b** (1.1 g, 4.64 mmol) in acetone:water (8:2 ratio, should get clear solution) and heated to 50 °C for 12 h. Once completion of the reaction, as indicated by TLC, acetone was removed from the reaction mixture and washed with water and organic layer was dried over sodium sulphate, concentrated under reduced pressure and the crude residue was titurated with 3% dichlomethane in hexane to yield compound **4b** (1.1 g, 72%) as white solid. The solid compound was directly taken to next step without further purification. ESI-MS: (*m/z*) calcd for $C_{11}H_{12}IN_3O$: 329.14, found 330.15 (M+H). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.03 (s, 2H), 7.11 (s, 2H), 4.05 (s, 2H), 2.31 (s, 6H) ¹³C NMR (100 MHz, CDCl₃) 165.45, 147.75, 135.12, 121.844, 114.36,

22.28; Anal. calcd for C₁₁H₁₂IN₃O: (%) C, 40.14; H, 3.67; I, 38.56; N, 12.77; O, 4.86 Found: C, 40.21; H, 3.64; I, 38.55; N, 12.73; O, 4.87.

2-azido-N-(1H-benzo[d]imidazol-2-yl)acetamide (5a): NaN₃ (0.49 g, 7.47 mmol) was added to the stirred solution of compound 4a (1.5g, 4.98 mmol) in DMF:H₂O (8:2) mixture and heated to 110 °C for 20 h. Once completion of the reaction, as indicated by TLC, the reaction mixture was transferred into water. The precipitated product was filtered to yield compound 5a (0.8 g, 75%) as off-white solid. ESI-MS: (m/z) calcd for C₉H₈N₆O: 216.20, found 215.20 (M+H). ¹H NMR (400 MHz, DMSO- d_6) δ 12.06 (s, 2H), 7.12-7.61 (m, 4H), 3.89 (s, 2H) ¹³C NMR (100 MHz, CDCl₃) 166.74, 147.67, 135.49, 122.53, 114.39, 50.51; Anal. calcd for C₉H₈N₆O: (%) C, 50.00; H, 3.73; N, 38.87; O, 7.40 Found: C, 50.00; H, 3.73; N, 38.87; O, 7.40.

2-azido-N-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)acetamide (**5b**): NaN₃ (0.49 g, 7.47 mmol) was added to the stirred solution of compound **4b** (1.1 g, 4.98 mmol) in DMF:H₂O (8:2) mixture and heated to 110 °C for 20 h. Once completion of the reaction, as indicated by TLC, the reaction mixture was transferred into water. The precipitated product was filtered to yield compound **5b** (0.6 g, 74%) as off-white solid. ESI-MS: (*m/z*) calcd for $C_{11}H_{12}N_6O$: 244.25, found 245.20 (M+H). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.08 (s, 2H), 7.19 (s, 2H), 4.31 (s, 2H), 2.26 (s,6H) ¹³C NMR (100 MHz, CDCl₃) 166.44, 147.76, 135.41, 121.25, 113.79, 43.98, 20.14; Anal. calcd for $C_{11}H_{12}N_6O$: (%) C, 54.09; H, 4.95; N, 34.41; O, 6.55 Found: C, 54.20; H, 4.93; N, 34.42; O, 6.65. *3. Single Crystal data*

Single Crystal X-ray Crystallographic Structure of Compound 6d:

Crystallographic data for the compound **6d** have been deposited to the Cambridge Crystallographic Data Center and corresponding deposition number is **CCDC 1904042**.

ORTEP crystal structure diagram of compound 6d

Identification code	6d (exp_399-AB-4R)
Empirical formula	C ₂₀ H ₂₈ N ₆ O
Formula weight	368.48
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$

a/Å	18.8646(7)
b/Å	5.4019(2)
c/Å	20.0357(6)
α/°	90
β/°	90.614(3)
γ/°	90
Volume/Å ³	2041.61(12)
Ζ	4
$\rho_{calc}g/cm^3$	1.199
μ/mm ⁻¹	0.619
F(000)	792.0
Crystal size/mm ³	0.5 imes 0.02 imes 0.01
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.828 to 159.794
Index ranges	$-23 \le h \le 23, -6 \le k \le 3, -23 \le l \le 25$
Reflections collected	10329
Independent reflections	4308 [$R_{int} = 0.0482, R_{sigma} = 0.0635$]
Data/restraints/parameters	4308/0/245
Goodness-of-fit on F ²	1.063
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0671$, $wR_2 = 0.1867$
Final R indexes [all data]	$R_1 = 0.0834$, $wR_2 = 0.2036$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.27

4. ¹H and ¹³C NMR spectra's

¹H and ¹³C NMR spectra's of represented final compounds:

¹HNMR of **6a**

¹³CNMR of **6a**

¹HNMR of $\mathbf{6b}$

¹³CNMR of **6b**

¹HNMR of **6d**

¹HNMR of **6e**

¹³CNMR of **6e**

¹³HNMR of **6f**

¹³CNMR of **6f**

¹HNMR of **6**j

¹³CNMR of **6j**

¹HNMR of 6k

¹³CNMR of **6k**

¹HNMR of 60

¹³CNMR of **60**

¹HNMR of **6p**

¹³CNMR of **6p**

¹HNMR of 6q

¹HNMR of 7a

¹³CNMR of **7a**

¹HNMR of 7b

¹³CNMR of **7b**

¹HNMR of **7d**

¹³CNMR of **7d**

¹HNMR of **7**f

¹³CNMR of **7**f

¹HNMR of **7i**

¹HNMR of **7**l

¹³CNMR of **7**l

¹HNMR of **7m**

¹HNMR of 10b

¹³CNMR of **10b**

¹HNMR of **11a**

¹³CNMR of **11a**

¹HNMR of **11c**

¹³CNMR of **11c**

¹HNMR of **11d**

5. Mass spectra's

S46

RawMode:Averaged 0.21-0.34(88-140) BasePeak:403(1622703) BG Mode:Averaged 0.00-0.15(2-62) Segment 1 - Event 2

RawMode:Averaged 0.21-0.30(88-124) BasePeak:382(1086296) BG Mode:Averaged 0.00-0.18(2-74) Segment 1 - Event 2

RawMode:Averaged 0.21-0.33(88-136) BasePeak:395(600430) BG Mode:Averaged 0.00-0.18(2-74) Segment 1 - Event 2

RawMode:Averaged 0.18-0.36(74-148) BasePeak:331(1422643) BG Mode:Averaged 0.00-0.17(2-72) Segment 1 - Event 2

RawMode:Averaged 0.18-0.31(74-128) BasePeak:333(361269) BG Mode:Averaged 0.00-0.18(2-74) Segment 1 - Event 2

RawMode:Averaged 0.20-0.36(84-148) BasePeak:385(1836587) BG Mode:Averaged 0.00-0.17(2-70) Segment 1 - Event 2

S52

S53

RawMode:Averaged 0.19-0.30(80-126) BasePeak:410(304680) BG Mode:Averaged 0.00-0.17(2-70) Segment 1 - Event 2

RawMode:Averaged 0.19-0.30(78-126) BasePeak:359(546060) BG Mode:Averaged 0.00-0.20(2-82) Segment 1 - Event 2

RawMode:Averaged 0.22-0.33(94-138) BasePeak:413(1014285) BG Mode:Averaged 0.00-0.19(2-80) Segment 1 - Event 2

RawMode:Averaged 0.18-0.31(74-128) BasePeak:389(271223) BG Mode:Averaged 0.00-0.20(2-84) Segment 1 - Event 2

