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S1. Studies of dynamics of myosin-V with tight-chemomechanical 

coupling model 

Here, we explain the experimental data of Mehta et al. [S1] on the force 

dependence of dwell time (see Fig. 4a) using the tight-chemomechanical coupling 

model. For simplicity of treatment, we consider the simplest tight-chemomechanical 

coupling model, where we neglect backward stepping. In the model, an ATPase 

activity is tightly coupled with a forward mechanical step and the force dependence of 

the dwell time results solely from the force dependence of the rate constants of 

ATPase activity. It is important to note that neglecting backward stepping cannot 

explain the experimental results on stepping ratio (see Fig. 3a). Since in the range of 

the force used in the experiments of Mehta et al. [S1] (see Fig. 4a) the number of 

backward stepping is much smaller than that of the forward stepping, for an 

approximation, the effect of including backward stepping on the dwell time in the 

range of the force used in the experiments of Mehta et al. [S1] can be neglected. 

Since ATP hydrolysis and actin-stimulated Pi release are much faster than ADP 

release, for an approximation, the ATPase rate of myosin-V head is determined only 

by rate constants of ADP release and ATP binding. Moreover, since the time of the 

mechanical movement is much shorter than the inverse of the ATPase rates, for an 

approximation, the dwell time is determined solely by the ATPase rate. 

At saturated ATP, the ATPase rate k corresponds to the ADP-release rate kD. Thus, 

the dwell time can be calculated by 
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We assume that ADP release is composed of two substeps, with one substep having 

rate constant k1 and the other one having rate constant k2. Moreover, we assume that 

rate constant k1 is independent of force F and rate constant k2 is dependent on F, with 

 2 20 Bexpk k F k T    , where k20 is rate constant of k2 under F = 0 and   is the 

characteristic distance. Thus, we have 

           
 D 1 20 B

1 1 1

expk k k F k T
 

  
.                  (S2) 

Using Eqs. (S1) and (S2) and by adjusting k1 = 10.8 1s , k20 = 1600 1s  and   

= 12 nm, we fit the single-molecule data of Mehta et al. [S1] on the dwell time versus 

force at saturated ATP (2 mM) (Fig. S1). 

Then, we consider non-saturated ATP. We denote by kbT the second-order rate 

constant of ATP binding and assume that kbT is force independent. The ATPase rate, k, 

can be calculated by 

         
bT D

1 1 1

[ATP]k k k
  .                            (S3) 

The dwell time can be calculated by 
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Using Eqs. (S2) – (S4), with values of k1 = 10.8 1s , k20 = 1600 1s  and   = 

12 nm (see above) and by additionally adjusting kbT = 0.7 1 1μM s  , we fit the 

single-molecule data of Mehta et al. [S1] on the dwell time versus force at 1 μM  

ATP (Fig. S1). From Fig. S1, it is seen that the theoretical data under large forces are 

deviated far away from the experimental data. Specifically, under F = 2.7 pN, the 

theoretical value at 1 μM  ATP is about 2-fold larger than the experimental value. 

This can be explained as follows. Under low force (e.g., F = 0.4 pN), since 

bT1 [ATP]k  at 1 μM  ATP is much larger than D1 k , the dwell time at 1 μM  ATP is 

nearly equal to bT1 [ATP]k . Under F = 2.7 pN, the dwell time is equal to D1 k  at 

saturated ATP (2 mM). The experimental data showed that the dwell time under F = 

2.7 pN and at 2 mM ATP is close to that under F = 0.4 pN and at 1 μM  ATP, 

implying that bT1 [ATP]k  is close to D1 k . Thus, under F = 2.7 pN, the dwell time at 

1 μM  ATP, which is nearly equal to bT1 [ATP]k  + D1 k , is about 2-fold larger than 
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that at 2 mM ATP, which is equal to D1 k . Consequently, the tight chemomechanical 

coupling model dictates that under any force the dwell time at low ATP is always 

larger than that at high ATP. 
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Fig. S1. Dwell time versus force at different ATP concentrations. Lines are theoretical 

data calculated using Eqs. (S1) – (S4) and with k1 = 10.8 1s , k20 = 1600 1s ,   = 

12 nm and kbT = 0.7 1 1μM s  , and symbols are experimental data taken from Mehta 

et al. [S1]. 
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S2. Dynamics of myosin-V with considering ATP-independent 

backward stepping 

In the main text, we presented equations for the dynamics of myosin-V without 

considering the detachment of the head from actin in the strongly-binding state (  or 

ADP state). Here, we present equations with considering the detachment of the head 

in the strongly-binding state. We only consider the detachment of the leading head in 

the strongly-binding state under the backward force F. The detachment rate in the 

strongly-binding state can be written as 

           0 exp dF F  ,                             (S5) 

where 0  is the detachment rate of the leading head in the strongly-binding state 

under F = 0 and Fd is the characteristic detachment force. Thus, during processive 

stepping, the rate constant of the leading head detaching from actin can be calculated 

by  ( ) ( )
0D D exp dk k F F     . 

 

S2.1. At saturated ATP concnetration 

As derived in the main text, probability PE1 can be calculated by 

            
   

   
B

E1
B

exp exp

exp exp 1

E F
P

E F

 
 




 
.                     (S6) 

Considering the detachment of the leading head in the strongly-binding state, the 

stepping ratio can be calculated by     ( ) ( )
E1 E1 0D D1 exp dr P k P k F F      . 

Substituting Eq. (S6) into above equation, we have 

      
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D
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

.        (S7) 

With definitions    ( ) ( )
0 BD D expr k k E   and  S 0lnF r   (see main text), Eq. 

(S7) can be rewritten as 

             
 

S1
0

0
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.                     (S8) 

Similarly, with definitions    ( ) ( )
0 BD D expr k k E   and  S 0lnF r  , Eq. (S6) 

can be rewritten as 
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Eq. (S9) is identical to Eq. (4), as expected. 

Considering the detachment of the leading head in the strongly-binding state, the 

velocity of the motor can be calculated by 

              ( ) ( )
E1 E1 0D D1 exp dv P k P k F F d       .         (S10) 

Substituting Eq. (S9) into Eq. (S10) we have 
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 Similarly, considering the detachment of the leading head in the strongly-binding 

state, the dwell time can be calculated by 

          
   d ( ) ( )

E1 E1 0 dD D

1

1 exp
T

P k P k F F 


    
.           (S12) 

Substituting Eq. (S9) into Eq. (S12) we have 

          

 

   

S

S

( )
1 D

0 ( )
D

d ( )
1 0 d D

0 ( )
D

1
exp

1

F F

F F

k
r

k
T

F F k
r

k
















 
.                (S13) 

 Therefore, at saturated ATP, the stepping ratio, velocity and dwell time for 

myosin-V with considering ATP-independent backward stepping can be calculated by 

Eqs. (S8), (S11) and (S13), respectively. As expected, with 0  = 0, Eqs. (S8), (S11) 

and (S13) become Eqs. (2), (6) and (9), respectively. In Fig. S2 we show the force 

dependence of velocity and dwell time for different values of 0  and fixed Fd = 4.5 

pN calculated using Eqs. (S11) and (S13) and with values of parameters r0, FS, ( )
Dk   

and ( )
Dk   under the experimental condition of Uemura et al. [9] (see Table 1). 
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Fig. S2. Dynamics of myosin-V with inclusion of ATP-independent backward 

stepping. (a) Force dependence of velocity for different values of 0 . (b) Force 

dependence of dwell time for different values of 0 . 

 

 

 

S2.2. At non-saturated ATP concentration 

As given in the main text, we still have  ( ) ( )
EF E1 E2D D1P P P P P     and 

    ( ) ( )
EB E1 E2D D1 1 1P P P P P      , where probabilities PE2, ( )

DP   and ( )
DP   can 

still be calculated by Eqs. (11), (15) and (16), respectively. 
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Considering the detachment of the leading head in the strongly-binding state, the 

velocity of the motor can be calculated by   ( ) ( )
EF EB 0 exp dv P k P k F F d      , 

where k(+) and k(–) can still be calculated by Eqs. (12) and (14), respectively. The 

above equation can be rewritten as 

        ( ) ( ) ( ) ( )( ) ( )
E1 E2 E1 E2 0D D D D1 1 1 1 exp .d

v
P P P P k P P P P k F F

d
                     

                                                             (S14) 

 Considering the detachment of the leading head in the strongly-binding state, the 

dwell time between two mechanical steps can be calculated by 

  ( ) ( )
d EF EB 01 exp dT P k P k F F      , which can be rewritten as 

        
d ( ) ( ) ( ) ( )( ) ( )

E1 E2 E1 E2 0D D D D

1
.

1 1 1 1 exp d

T
P P P P k P P P P k F F    


                

                                                             (S15) 

 


