Supporting Information

Synthesis, antibacterial, and antiviral activity of myricetin derivatives containing a 1,2,4-triazole Schiff base

Ying Chen^a ‡, Pu Li^a ‡, Shijun Su^a, Mei Chen^a, Jun He^a, Liwei Liu^a, Ming He^a, Hua Wang^b*, Wei Xue^a* ^aState Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China ^bInstitute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China. ‡The first and the second authors contributed equally to this work. *Corresponding author: Wei Xue; e-mail: wxue@gzu.edu.cn; wanghua4@163.com(Hua Wang); Tel/Fax: 0086-

0851-88292090

Content

1.	Experimental section	2
2.	Biological activities tests	2
2.1	In vitro Antibacterial Activity Test	2
2.2	Antiviral activities <i>in vitro</i>	2
2.2.	1 Purification of TMV	2
2.2.	2. Curative activity of the target compounds against TMV in vivo	3
2.2.	3. Inactivation activity of the target compounds against TMV in vivo	3
2.2.	4. Protection activity of the target compounds against TMV in vivo	3
2.3	Scanning electron microscopy ³³	3
2.4	Molecular docking ³³	4
2.5	¹ H NMR, ¹³ C NMR, and HRMS spectrum of the title compounds	4

1. Experimental section

Bruker ASCEND 400 (400 MHz) NMR spectrometer [tetramethylsilane (TMS) for internal standard, Bruker, Switzerland] and JEOL-ECX 500 (500 MHz) NMR (TMS for internal standard, Japan JEOL); Thermo Scientic Q Exactive High Resolution Mass Spectrometer (HRMS, Thermo Fisher Scientific); X-4 Digital Micro Melting Point Tester (Beijing Tektronix Instrument Co., Ltd.); Sartorius Electronic Balance (German Sartorius Group); QY-20 three-purpose ultraviolet analyzer (Shanghai Anting Electronic Instrument Factory). All reagents and solvents were purchased from Chinese Chemical Reagent Company.

2. Biological activities tests

2.1 In vitro Antibacterial Activity Test

In this study, a series of myricetin derivatives containing 1,2,4-triazole Schiff bases were synthesized and their antibacterial activity against *Xanthomonas axonopodis pv.citri* (*Xac*), *Ralstonia solanacearum* (*Rs*) and *Xanthomonas oryzae pv. oryzae* (*Xoo*) *in vitro* were investigated using turbidity tests.³³ The solvent nutrient broth (NB; 40 µL) medium (1.5 g beef extract, 2.5 g peptone, 0.5 g yeast powder, 5.0 g glucose, and 500 mL distilled water, pH 7.0-7.2) was added to *Xac*, *Rs*, or *Xoo*.

After adding 5 mL of the solvent NB medium, containing the test compound and commercial fungicide, the inoculated tubes were incubated at 28±1 °C and continuously shaken at 180 rpm for 24–48 h until the bacteria were incubated in the logarithmic growth phase. The growth of the culture was monitored by measuring the optical density (OD₅₉₅) at 595 nm using a 680 type plate reader (BIO-RAD, Hercules, CA, USA). The inhibition rate I was then calculated by the following formula:

Inhibition rate I (%) = (C-T)/C×100

Where C is the corrected turbidity value (OD₅₉₅) of bacterial growth on untreated NB, T is the corrected turbidity value (OD₅₉₅) of bacterial growth on treated NB, and I represents inhibition rate.

2.2 Antiviral activities in vitro

2.2.1 Purification of TMV

The virus was propagated in tobacco using the Gooding method. Tabacum (N. tabacum) cv. K326 was purified. The absorbance at 260 nm was estimated using an ultraviolet spectrophotometer.

Virus concentration (mg/mL) = $(A_{260} \times dilution ratio)/E^{0.1\%} \ 1 \ cm^{260 \ nm}$, where E represents the extinction coefficient of TMV, E $^{0.1\%} \ 1 \ cm^{260 \ nm}$ is 3.1.

2.2.2. Curative activity of the target compounds against TMV in vivo

To determine curative activity, growing *Nicotiana tabacum* L. (*N. tabacum* L.) leaves of the same age were selected, which were then inoculated with TMV (concentration of 6×10⁻³ mg/mL) by dipping and brushing the entire leaves after they had been spread with silicon carbide. After inoculation, the leaves were then washed with water for 0.5 h. The compound solution was applied to the left side of the leaves, and the solvent was applied to the right side as a control. Then, after 3–4 d of inoculation, the number of local lesions was counted with three replicates being set for each compound.

2.2.3. Inactivation activity of the target compounds against TMV in vivo

The virus was inhibited by mixing it with the same volume of the compound solution for 30 min. Note that the right side of the leaves was inoculated with a mixture of solvent and virus as control. All the leaves had been previously spread with silicon carbide. Then, after 3–4 d of inoculation, the number of local lesions was counted with three replicates being set for each compound.

2.2.4. Protection activity of the target compounds against TMV in vivo

The compound solution was applied to the left side of the tobacco L leaf. The solvent was applied to the right side as a control for growing the tobacco leaves. After 12 h, crude TMV (concentration 6×10⁻³ mg/mL) was seeded at the same concentration on the entire leaves on either side of the leaves, which had previously been spread with silicon carbide. After 0.5 h, the leaves were washed with water and dried. Then, after 3–4 d of inoculation, the number of local lesions was recorded with three replicates being set for each compound.

The inhibition rate of the compound was calculated according to the following formula ("av" represents the average value):

Inhibition rate (%) = [(av local lesion no. of control (not treated with compd)–av local lesion no. smeared with drugs)/av local lesion no. of control (not treated with compd)]×100%

2.3 Scanning electron microscopy³³

In this assay, 1.5 mL Xanthomonas axonopodis pv.citri (*Xac*) cells incubated at the logarithmic phase were centrifuged and washed with PBS (pH = 7.1), and re-suspended in 1.5 mL of PBS buffer (pH = 7.1). After that, bacteria Xanthomonas axonopodis pv.citri (*Xac*) was incubated with compound **6q** at concentration of 12.5 μ g/mL, 25.0 μ g/mL, and an equivalent volume of DMSO (solvent control) for 4 h at room temperature. After incubation, these samples were washed 3 times with PBS (pH = 7.1). Subsequently, the bacterial cells were fixed for 8 h at 4 °C with 2.5% glutaraldehyde, and then dehydrated with graded ethanol series and pure tert-butanol (2 times with 10 min/time). Following dehydration, samples were freezing dried and coated with gold, and

visualized using Nova Nano SEM 450.

2.4 Molecular docking³³

Molecular docking. The molecular docking was performed by using DS-CDocker implemented in Discovery Studio (version 4.5). The coat protein subunit amino acid sequence of tobacco mosaic virus (TMV) was searched by the UniProt database. The Protein BLAST server was used to search the template protein and the homologies of TMV-CP sequences were aligned. Homology modeling of TMV-CP was carried out using Create Homology Models, which is a module integrated in Discovery Studio. The obtained models were evaluated by Ramachandran plots. The 3D structures of the compounds were constructed using the Sketching module and optimized by the Full Minimization module. All parameters are default during the docking process.

2.5¹H NMR, ¹³C NMR, and HRMS spectrum of the title compounds

The physical characteristics, HRMS, ¹H NMR, ¹³C NMR data for all the target compounds were shown in below.

3-(3-((4-(benzylideneamino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-

trimethoxyphenyl)-4H-chromen-4-one (**6a**): White solid, yield: 53.2%, m.p: 82-84 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.83 (s, 1H, CH=N), 7.91 (d, *J* = 2.2 Hz, 2H, Ar-2,6-H), 7.60 (ddd, *J* = 12.6, 9.5, 5.1 Hz, 3H, Ar-3,4,5-H), 7.34 (s, 2H, Myr-2',6'-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.99 (t, *J* = 6.2 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.84 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.22 (t, *J* = 7.0 Hz, 2H, CH₂), 2.44 (s, 3H, triazole-CH₃), 2.08 – 2.02 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.56, 164.23, 160.75, 158.64, 153.17, 152.22, 149.49, 146.66, 140.17, 139.88, 133.43, 132.30, 129.63, 129.31, 129.08, 125.96, 108.89, 106.15, 96.38, 93.56, 70.50, 60.63, 56.53, 56.50, 30.27, 29.57, 11.44; HRMS Calcd for C₃₃H₃₅O₈N₄S [M+H]⁺: 647.21701, Found: 647.21680.

3-(3-((4-((4-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6b**): White solid, yield: 61.0%, m.p: 76-78 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.77 (s, 1H, CH=N), 7.80 (d, *J* = 8.0 Hz, 2H, Ar-2,6-H), 7.36 (d, *J* = 8.0 Hz, 2H, Ar-3,5-H), 7.33 (s, 2H, Myr-2',6'-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, *J* = 6.0 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.84 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.21 (t, *J* = 6.0 Hz, 2H, CH₂), 2.41 (s, 3H, triazole-CH₃), 2.39 (s, 3H, Ar-4-CH₃), 2.08 – 1.99 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.56, 165.79, 164.22, 160.73, 158.64, 153.16, 152.20, 149.46, 146.54, 143.88, 140.17, 139.84, 130.21, 129.61, 129.34, 125.96, 108.87, 106.10, 96.38, 93.56, 70.49, 60.63, 56.54, 56.51, 30.25, 29.57, 21.75, 11.40; HRMS Calcd for C₃₄H₃₇O₈N₄S [M+H]⁺: 661.23266, Found: 661.23224.

3-(3-((4-((3-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6c**): Yellow solid, yield: 69.4%, m.p: 78-80 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.78 (s, 1H, CH=N), 7.73 (s, 1H, Ar-2-H), 7.71 (d, *J* = 4.6 Hz, 1H, Ar-6-H), 7.44 (d, *J* = 5.0 Hz, 1H, Ar-4-H), 7.37 (t, *J* = 6.2 Hz, 1H, Ar-5-H), 7.33 (s, 2H, Myr-2',6'-H), 6.82 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, *J* = 5.6 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.86 (s, 3H, Myr-7-OCH₃), 3.84 (s, 6H, Myr-3',5'-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.22 (t, *J* = 7.1 Hz, 2H, CH₂), 2.43 (s, 3H, triazole-CH₃), 2.38 (s, 3H, Ar-3-CH₃), 2.07 – 2.03 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.55, 165.87, 164.23, 160.75, 158.64, 153.17, 152.21, 149.48, 146.58, 140.17, 139.88, 139.06, 134.12, 132.25, 129.52, 126.72, 126.41, 125.96, 108.89, 106.15, 96.38, 93.57, 70.50, 60.63, 56.53, 56.50, 30.27, 29.58, 21.23, 11.42; HRMS Calcd for C₃₄H₃₇O₈N₄S [M+H]⁺: 661.23266, Found: 661.23212.

3-(3-((4-((4-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6d**): Brown solid, yield: 75.1%, m.p: 76-78 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 8.72 (s, 1H, CH=N), 7.87 (d, J = 8.7 Hz, 2H, Ar-2,6-H), 7.34 (s, 2H, Myr-2',6'-H), 7.10 (d, J = 8.7 Hz, 2H,

Ar-3,5-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.00 (t, J = 5.9 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.20 (t, J = 6.9 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 2.07 – 1.99 (m, 2H, CH₂); ¹³C NMR (125MHz, DMSO- d_6) δ 172.61, 165.93, 164.27, 163.62, 160.78, 158.69, 153.22, 152.24, 149.49, 146.46, 140.24, 139.88, 131.44, 126.02, 124.79, 115.18, 108.93, 106.15, 96.43, 93.60, 70.55, 60.69, 56.57, 56.11, 30.35, 29.61, 11.38; HRMS Calcd for C₃₄H₃₇O₉N₄S [M+H]⁺: 677.22758, Found: 677.22681.

3-(3-((4-((2-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (*Ge*): White solid, yield: 66.3%, m.p: 74-76 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.95 (s, 1H, CH=N), 7.94 (d, *J* = 9.5 Hz, 1H, Ar-6-H), 7.60 (t, *J* = 7.4 Hz, 1H, Ar-4-H), 7.33 (s, 2H, Myr-2', 6'-H), 7.20 (d, *J* = 8.3 Hz, 1H, Ar-3-H), 7.09 (t, *J* = 7.5 Hz, 1H, Ar-5-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.01 (t, *J* = 6.1 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.88 (s, 3H, Myr-7-OCH₃), 3.84 (s, 9H, Myr-3',5'-OCH₃ and Ar-2-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.22 (t, *J* = 7.0 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 2.13 – 2.00 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.55, 164.23, 160.77, 160.34, 159.77, 158.64, 153.18, 152.18, 150.00, 145.81, 140.19, 139.92, 135.30, 127.24, 125.96, 121.40, 120.20, 112.82, 108.91, 106.18, 96.39, 93.58, 70.53, 60.63, 56.54, 56.51, 30.28, 29.82, 11.36. HRMS Calcd for C₃₄H₃₇O₉N₄S [M+H]⁺: 677.22758, Found: 677.22681.

3-(3-((4-((3,4-dimethylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6f**): Yellow solid, yield: 51.5%, m.p: 81-83 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.72 (s, 1H, CH=N), 7.67 (s, 1H, Ar-2-H), 7.62 (d, *J* = 8.1 Hz, 1H, Ar-6-H), 7.36 (d, *J* = 8.3 Hz, 1H, Ar-5-H), 7.33 (s, 2H, Myr-2', 6'-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, *J* = 6.2 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.84 (s, 6H, Myr-3',5'-OCH₃), 3.76 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.20 (t, *J* = 7.0 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 2.30 (s, 3H, Ar-4-CH₃), 2.28 (s, 3H, Ar-3-CH₃), 2.05 – 2.02 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.55, 166.20, 164.25, 160.79, 158.65, 153.19, 152.21, 146.40, 142.77, 140.19, 139.95, 137.79, 130.67, 129.96, 129.91, 127.17, 125.96, 108.92, 106.23, 96.41, 93.61, 70.52, 60.64, 56.61, 56.57, 56.52, 30.27, 29.64, 20.14, 19.69, 11.35; HRMS Calcd for C₃₅H₃₉O₈N₄S [M+H]⁺: 675.24831, Found: 675.24750.

3-(3-((4-((3,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6g**): White solid, yield: 64.9%, m.p: 85-87 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.69 (s, 1H, CH=N), 7.48 (d, *J* = 1.8 Hz, 1H, Ar-6-H), 7.45 (d, *J* = 1.9 Hz, 1H, Ar-5-H), 7.33 (s, 2H, Myr-2',6'-H), 7.13 (s, 1H, Ar-2-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, *J* = 6.1 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 3H, Ar-3-OCH₃), 3.84 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.82 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.20 (t, *J* = 7.0 Hz, 2H, CH₂), 2.39 (s, 3H, triazole-CH₃), 2.07 – 1.99 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.56, 166.32, 164.26, 160.78, 158.65, 153.60, 153.19, 152.23, 149.62, 149.46, 146.30, 140.19, 139.94, 125.96, 125.23, 124.77, 112.01, 109.96, 108.92, 106.23, 96.42, 93.61, 70.54, 60.65, 56.57, 56.11, 30.31, 29.61, 11.29; HRMS Calcd for C₃₅H₃₉O₁₀N₄S [M+H]⁺: 707.23814, Found: 707.23749.

3-(3-((4-((2,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6**h): White solid, yield: 56.7%, m.p: 74-76 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.79 (s, 1H, CH=N), 7.89 (d, *J* = 8.6 Hz, 1H, Ar-6-H), 7.33 (s, 2H, Myr-2',6'-H), 6.80 (s, 1H, Myr-6-H), 6.67 (d, *J* = 9.8 Hz, 2H, Ar-3,5-H), 6.47 (s, 1H, Myr-8-H), 4.00 (t, *J* = 6.1 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.87 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.84 (s, 6H, Myr-7-OCH₃ and Ar-2-OCH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 3.20 (t, *J* = 7.0 Hz, 2H, CH₂), 2.36 (s, 3H, triazole-CH₃), 2.16 – 2.00 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.54, 165.54, 164.21, 161.60, 160.84, 160.75, 158.61, 153.16, 152.11, 147.78, 145.65, 140.20, 139.91, 128.82, 125.96, 112.91, 108.89, 107.63, 106.15, 98.65, 96.34, 93.55, 70.51, 60.62, 56.52, 56.20, 30.29, 29.81, 11.21; HRMS Calcd for C₃₅H₃₉O₁₀N₄S [M+H]⁺: 707.23814, Found: 707.23773.

3-(3-((4-((4-(tert-butyl)benzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6i**): White solid, yield: 44.6%, m.p: 75-77 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.78 (s, 1H, CH=N), 7.83 (d, *J* = 8.2 Hz, 2H, Ar-2,6-H), 7.57 (d, *J* = 8.1 Hz, 2H, Ar-3,5-H), 7.36 (s, 2H, Myr-2',6'-H), 6.83 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.01 (t, *J* = 6.0 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.84 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.21 (t, *J* = 6.9 Hz, 2H, CH₂), 2.41 (s, 3H, triazole-CH₃), 2.07 – 2.00 (m, 2H, CH₂),1.31 (s, 9H, Ar-4-CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 172.61, 165.93, 164.29, 160.79, 158.70, 156.72, 153.22, 152.23, 149.50, 146.54, 140.25, 139.90, 129.70, 129.31, 129.06, 126.54, 126.02, 108.93, 106.15, 96.45, 93.62, 70.56, 60.69, 56.57, 35.45, 31.31, 30.33, 29.65, 11.42; HRMS Calcd for C₃₇H₄₃O₈N₄S [M+H]⁺: 703.27961, Found: 703.27643.

3-(3-((4-((thiophen-2-ylmethylene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)propoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6j**): Yellow solid, yield: 40.8%, m.p: 98-100 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 9.01 (s, 1H, CH=N), 7.98 (d, J = 5.1 Hz, 1H, thiophene-5-H), 7.82 (d, J = 3.6 Hz, 1H, thiophene-3-H), 7.34 (s, 2H, Myr-2',6'-H), 7.29 (t, J = 4.9, 3.7 Hz, 1H, thiophene-4-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 4.00 (t, J = 6.2 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 3.21 (t, J = 7.0 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 2.08 – 2.02 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.56, 164.22, 160.74, 160.26, 158.63, 153.17, 152.21, 149.42, 146.56, 140.17, 139.88, 137.09, 136.26, 133.99, 129.12, 125.96, 108.89, 106.15, 96.37, 93.56, 70.49, 60.64, 56.53, 56.49, 30.30, 29.55, 11.33; HRMS Calcd for C₃₁H₃₃O₈N₄S₂ [M+H]⁺: 653.17343, Found: 653.17279.

3-(4-((4-(benzylideneamino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-

trimethoxyphenyl)-4H-chromen-4-one (*6k*): Yellow solid, yield: 52.3%, m.p: 73-75 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.71 (s, 1H, CH=N), 7.86 (d, *J* = 8.8 Hz, 2H, Ar-2,6-H), 7.38 (t, *J* = 8.0 Hz, 1H, Ar-4-H), 7.33 (s, 2H, Myr-2',6'-H), 7.10 (t, *J* = 8.8 Hz, 2H, Ar-3,5-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.00 (t, *J* = 7.2 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 3H, Myr-7-OCH₃), 3.84 (s, 6H, Myr-3',5'-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.19 (t, *J* = 7.0 Hz, 2H, CH₂), 2.39 (s, 3H, triazole-CH₃), 2.07 – 2.00 (m, 2H, CH₂), 1.29 – 1.11 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.65, 163.90, 159.51, 157.89, 155.06, 151.88, 150.73, 148.95, 143.11, 141.05, 135.93, 133.83, 129.47, 128.31, 127.70, 127.12, 107.57, 106.18, 95.83, 93.72, 72.65, 60.70, 56.83, 56.08, 33.71, 27.91, 26.55, 10.55; HRMS Calcd for C₃₄H₃₇O₈N₄S [M+H]⁺: 661.23266, Found: 661.23199.

3-(4-((4-((4-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (*6l*): Yellow solid, yield: 46.6%, m.p: 82-84 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.79 (s, 1H, CH=N), 7.82 (d, *J* = 8.2 Hz, 2H, Ar-2,6-H), 7.37 (d, *J* = 7.6 Hz, 2H, Ar-3,5-H), 7.35 (s, 2H, Myr-2',6'-H), 6.80 (s, 1H, Myr-6-H), 6.47 (s, 1H, Myr-8-H), 3.95 (t, *J* = 6.0 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 3.18 (t, *J* = 6.3 Hz, 2H, CH₂), 2.42 (s, 3H, triazole-CH₃), 2.39 (s, 3H, Myr-4-CH₃), 1.77 (s, 4H, 2×CH₂); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.61, 165.64, 164.18, 160.72, 158.59, 153.13, 151.99, 146.64, 143.86, 140.29, 139.85, 130.21, 129.65, 129.32, 129.08, 126.02, 108.89, 106.09, 96.31, 93.51, 71.32, 60.61, 56.51, 56.46, 32.32, 28.91, 26.21, 21.73, 11.39; HRMS Calcd for C₃₅H₃₉O₈N₄S [M+H]⁺: 675.24831, Found: 675.24792.

3-(4-((4-((3-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6m**): Yellow solid, yield: 43.5%, m.p: 73-75 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.86 (s, 1H, CH=N), 7.73 (s, 1H, Ar-2-H), 7.71 (d, J = 4.9 Hz, 1H, Ar-6-H), 7.47 (t, J = 6.0 Hz, 1H, Ar-5-H), 7.45 (d, J = 5.3 Hz, 1H, Ar-4-H), 7.37 (s, 2H, Myr-2',6'-H), 6.86 (s, 1H, Myr-6-H), 6.50 (s, 1H, Myr-8-H), 4.14 (t, J = 6.8 Hz, 2H, CH₂), 3.96 (t, J = 6.3 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.86 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 2.40 (s, 3H, triazole-CH₃), 2.38 (s, 3H, Ar-3-CH₃), 1.92 – 1.84 (m, 2H, CH₂), 1.73 – 1.66 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.66, 164.67, 164.24, 160.75, 158.65, 153.16, 152.13, 147.74, 140.33, 139.84, 139.07, 135.39, 133.91, 132.50, 129.55, 129.36, 126.47, 126.05, 108.91, 106.15, 96.42, 93.60, 71.51, 60.66, 56.54, 48.01, 27.18, 27.06, 24.86, 21.29, 11.07; HRMS Calcd for C₃₅H₃₉O₈N₄S [M+H]⁺: 675.24831, Found: 675.24768.

3-(4-((4-((4-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5trimethoxyphenyl)-4H-chromen-4-one (**6n**): White solid, yield: 65.7%, m.p: 68-70 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.74 (s, 1H, CH=N), 7.88 (d, *J* = 8.8 Hz, 2H, Ar-2,6-H), 7.35 (s, 2H, Myr-2',6'-H), 7.11 (d, *J* = 8.8 Hz, 2H, Ar-3,5-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.98 (t, *J* = 6.4 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 6H, Myr-7-OCH₃ and Ar-4-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.15 (t, *J* = 6.4 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 1.87 – 1.77 (m, 2H, CH₂), 1.76 – 1.69 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.62, 165.85, 164.21, 163.59, 160.76, 158.62, 153.15, 152.04, 149.40, 146.47, 140.31, 139.91, 131.38, 126.04, 124.78, 115.16, 108.93, 106.18, 96.37, 93.57, 71.37, 60.64, 56.56, 56.05, 32.34, 28.90, 26.24, 11.31.; HRMS Calcd for C₃₅H₃₉O₉N₄S [M+H]⁺: 691.24323, Found: 691.24255.

3-(4-((4-((2-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5trimethoxyphenyl)-4H-chromen-4-one (**6o**): Yellow solid, yield: 58.1%, m.p: 62-64 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.97 (s, 1H, CH=N), 7.97 (d, *J* = 7.6 Hz, 1H, Ar-6-H), 7.61 (t, *J* = 7.1 Hz, 1H, Ar-4-H), 7.35 (s, 2H, Myr-2',6'-H), 7.20 (d, *J* = 8.4 Hz, 1H, Ar-3-H), 7.10 (t, *J* = 7.5 Hz, 1H, Ar-5-H), 6.80 (s, 1H, Myr-6-H), 6.47 (s, 1H, Myr-8-H), 4.03 (t, *J* = 6.5 Hz, 2H, CH₂), 3.89 (s, 3H, Myr-5-OCH₃), 3.87 (s, 3H, Myr-7-OCH₃), 3.85 (s, 9H, Myr-3',5'-OCH₃ and Ar-2-OCH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 3.18 (s, 2H, CH₂), 2.41 (s, 3H, triazole-CH₃), 1.79 – 1.57 (m, 2H, CH₂), 1.24 – 0.85 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.60, 164.17, 160.75, 160.10, 159.77, 158.59, 153.14, 151.98, 149.99, 145.94, 140.30, 139.92, 135.26, 127.23, 126.02, 121.40, 120.23, 112.81, 108.92, 106.16, 96.31, 93.53, 71.35, 60.62, 56.54, 56.45, 32.56, 31.42, 28.93, 26.23; HRMS Calcd for C₃₅H₃₉O₉N₄S [M+H]⁺: 691.24323, Found: 691.24286.

3-(4-((4-((3,4-dimethylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6p**): Yellow solid, yield: 42.3%, m.p: 64-66 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.74 (s, 1H, CH=N), 7.70 (s, 1H, Ar-2-H), 7.64 (d, J = 7.6 Hz, 1H, Ar-6-H), 7.35 (s, 2H, Myr-2',6'-H), 7.32 (d, J = 7.9 Hz, 1H, Ar-5-H), 6.83 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 3.98 (t, J = 6.4 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.19 (t, J = 6.7 Hz, 2H, CH₂), 2.41 (s, 3H, triazole-CH₃), 2.30 (s, 3H, Ar-4-CH₃), 2.29 (s, 3H, Ar-3-CH₃), 1.76 – 1.72 (m, 4H, 2×CH₂); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.62, 166.09, 164.21, 160.75, 158.62, 153.15, 152.04, 149.47, 146.55, 142.78, 140.30, 139.86, 137.82, 130.69, 129.93, 127.19, 126.85, 126.03, 108.91, 106.12, 96.37, 93.56, 71.36, 60.63, 56.54, 56.50, 32.35, 28.89, 26.22, 20.15, 19.70, 11.37; HRMS Calcd for C₃₆H₄₁O₈N₄S [M+H]⁺: 689.26396. Found: 689.26196.

3-(4-((4-((3,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6q**): Brown solid, yield: 61.8%, m.p: 65-67°C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.71 (s, 1H, CH=N), 7.50 (d, *J* = 7.8 Hz, 1H, Ar-6-H), 7.47 (s, 1H, Ar-2-H), 7.35 (s, 2H, Myr-2',6'-H), 7.13 (d, *J* = 8.3 Hz, 1H, Ar-5-H), 6.83 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.98 (t, *J* = 6.1 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.87 (s, 3H, Ar-3-OCH₃), 3.85 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.83 (s, 3H, Myr-7-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.22 (t, *J* = 6.3 Hz, 2H, CH₂), 2.40 (s, 3H, triazole-CH₃), 1.79 – 1.64 (m, 4H, 2×CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.63, 166.19, 164.22, 160.75, 158.62, 153.57, 153.15, 152.05, 149.61, 149.42, 146.46, 140.30, 139.86, 126.03, 125.24, 124.78, 112.01, 109.88, 108.90, 106.12, 96.37, 93.57, 71.38, 60.64, 56.55, 55.98, 32.32, 28.90, 26.24, 11.31; HRMS Calcd for C₃₆H₄₁O₁₀N₄S [M+H]⁺: 721.25379, Found: 721.25275.

3-(4-((4-((2,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6r** $): Yellow solid, yield: 67.5%, m.p: 72-74 °C; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 8.51 (s, 1H, CH=N), 7.77 (s, 1H, Ar-3-H), 7.74 (d, *J* = 3.7 Hz, 1H, Ar-6-H), 7.32 (d, *J* = 3.8 Hz,, 1H, Ar-5-H), 7.29 (s, 2H, Myr-2',6'-H), 6.49 (s, 1H, Myr-6-H), 6.36 (s, 1H, Myr-8-H), 4.11 (t, *J* = 6.9 Hz, 2H, CH₂), 3.96 (s, 3H, Myr-5-OCH₃), 3.96 (s, 3H, Myr-7-OCH₃), 3.93 (s, 3H, Ar-2-OCH₃), 3.91 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.90 (s, 3H, Myr-4'-OCH₃), 3.37 (t, *J* = 7.0 Hz, 2H, CH₂), 2.45 (s, 3H, triazole-CH₃), 2.24 – 2.16 (m, 2H, CH₂), 1.95 – 1.83(m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 173.93, 164.01, 162.87, 160.99, 158.81, 153.02, 152.85, 150.97, 145.83, 143.83, 140.37, 139.89, 129.86, 129.65, 129.15, 128.98, 128.69, 125.95, 109.38, 105.80, 95.85, 92.43, 70.58, 61.03, 56.37, 55.86, 30.31, 30.03, 21.83, 11.21; HRMS Calcd for C₃₆H₄₁O₁₀N₄S [M+H]⁺: 721.25379, Found: 721.25287.

3-(4-((4-((4-(tert-butyl)benzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)butoxy)-5,7-dimethoxy-2-

(*3,4,5-trimethoxyphenyl*)-*4H-chromen-4-one* (*6s*): Yellow solid, yield: 45.0%, m.p: 89-91 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.80 (s, 1H, CH=N), 7.86 (d, *J* = 8.4 Hz, 2H, Ar-2,6-H), 7.57 (d, *J* = 8.3 Hz, 2H, Ar-3,5-H), 7.35 (s, 2H, Myr-2',6'-H), 6.79 (s, 1H, Myr-6-H), 6.46 (s, 1H, Myr-8-H), 3.94 (t, *J* = 6.5 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.88 (s, 6H, Myr-3',5'-OCH₃), 3.86 (s, 3H, Myr-7-OCH₃), 3.78 (s, 3H, Myr-4'-OCH₃), 3.14 (t, *J* = 6.7 Hz, 2H, CH₂), 2.43 (s, 3H, triazole-CH₃), 2.34 – 2.29 (m, 2H, CH₂), 1.78 – 1.73 (m, 2H, CH₂), 1.32 (s, 9H, Ar-4-CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.62, 165.70, 164.17, 160.74, 158.58, 156.66, 153.14, 151.96, 140.34, 140.31, 139.93, 129.66, 129.23, 128.95, 126.46, 126.04, 108.92, 106.15, 96.29, 93.51, 71.41, 60.64, 56.53, 56.43, 35.34, 32.39, 31.21, 29.12, 26.54, 22.52; HRMS Calcd for C₃₈H₄₅O₈N₄S [M+H]⁺: 717.29526, Found: 717.29498.

3-((5-((4-(benzylideneamino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)pentyl)oxy)-5,7-dimethoxy-2-(3,4,5trimethoxyphenyl)-4H-chromen-4-one (**6t**): Brown solid, yield: 51.6%, m.p: 88-90 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.92 (s, 1H, CH=N), 7.93 (d, J = 2.2 Hz, 1H, Ar-6-H), 7.91 (d, J = 1.5 Hz, 1H, Ar-2-H), 7.63 (t, J = 6.7 Hz, 1H, Ar-4-H), 7.59 (t, J = 6.5 Hz, 1H, Ar-5-H), 7.55 (t, J = 6.6 Hz, 1H, Ar-3-H), 7.39 (s, 2H, Myr-2',6'-H), 6.85 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 4.08 (t, J = 7.0 Hz, 2H, CH₂), 3.94 (t, J = 6.8 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.88 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 2.38 (s, 3H, triazole-CH₃), 1.82 – 1.75 (m, 2H, CH₂), 1.73 – 1.66 (m, 2H, CH₂), 1.45 – 1.38 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.70, 164.42, 164.22, 160.74, 160.54, 153.15, 152.00, 147.75, 140.55, 140.45, 139.83, 133.20, 132.56, 129.65, 129.11, 126.10, 108.92, 106.18, 96.40, 93.58, 71.91, 60.67, 56.57, 56.53, 29.65, 27.62, 27.60, 22.84, 11.09; HRMS Calcd for C₃₅H₃₉O₈N₄S [M+H]⁺: 675.24831, Found: 675.24719.

3-((5-((4-((4-methylbenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)pentyl)oxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6u**): Yellow solid, yield: 64.4%, m.p: 57-59 °C; ¹H NMR (400 MHz,

DMSO- d_6) δ 8.79 (s, 1H, CH=N), 7.81 (d, J = 2.0 Hz, 2H, Ar-2,6-H), 7.38 (d, J = 1.6 Hz, 2H, Ar-3,5-H), 7.36 (s, 2H, Myr-2',6'-H), 6.82 (s, 1H, Myr-6-H), 6.48 (s, 1H, Myr-8-H), 3.95 (t, J = 6.8 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.86 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 3H, Myr-7-OCH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 3.07 (t, J = 7.1 Hz, 2H, CH₂), 2.42 (s, 3H, triazole-CH₃), 2.38 (s, 3H, Ar-4-CH₃), 1.67 – 1.61 (m, 4H, 2×CH₂), 1.47 – 1.42 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.64, 165.78, 164.17, 160.73, 158.59, 153.12, 151.93, 149.46, 146.60, 143.85, 140.43, 139.83, 130.21, 129.65, 129.33, 126.09, 108.91, 106.16, 96.32, 93.52, 71.83, 60.64, 56.52, 56.47, 32.75, 29.60, 29.11, 24.95, 21.72, 11.37; HRMS Calcd for C₃₆H₄₁O₈N₄S [M+H]⁺: 689.26396, Found: 689.26233.

3-((5-((4-((4-methoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)pentyl)oxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6v**): Yellow solid, yield: 66.8%, m.p: 54-56 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.74 (s, 1H, CH=N), 7.88 (d, *J* = 8.8 Hz, 2H, Ar-2,6-H), 7.36 (s, 2H, Myr-2',6'-H), 7.10 (d, *J* = 8.8 Hz, 2H, Ar-3,5-H), 6.84 (s, 1H, Myr-6-H), 6.49 (s, 1H, Myr-8-H), 3.99 (t, *J* = 7.2 Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.85 (s, 6H, Myr-3',5'-OCH₃), 3.84 (s, 6H, Myr-7-OCH₃ and Ar-4-OCH₃), 3.74 (s, 3H, Myr-4'-OCH₃), 3.05 (t, *J* = 7.1 Hz, 2H, CH₂), 2.39 (s, 3H, triazole-CH₃), 1.64 – 1.56 (m, 4H, 2×CH₂), 1.46 – 1.41 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.67, 166.00, 164.21, 163.57, 160.75, 158.63, 153.14, 152.01, 149.43, 146.46, 140.43, 139.84, 131.40, 126.10, 124.76, 115.16, 108.92, 106.20, 96.38, 93.57, 71.88, 60.66, 56.56, 56.04, 32.73, 29.59, 29.11, 24.93, 11.30; HRMS Calcd for C₃₆H₄₁O₉N₄S [M+H]⁺: 705.25888, Found: 705.25720.

3-((5-((4-((3,4-dimethoxybenzylidene)amino)-5-methyl-4H-1,2,4-triazol-3-yl)thio)pentyl)oxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (**6w**): Yellow solid, yield: 69.7%, m.p: 86-88 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.71 (s, 1H, CH=N), 7.50 (d, *J* = 7.7 Hz, 1H, Ar-6-H), 7.47 (s, 1H, Ar-2-H), 7.36 (s, 2H, Myr-2',6'-H), 7.12 (d, *J* = 8.3 Hz, 1H, Ar-5-H), 6.81 (s, 1H, Myr-6-H), 6.47 (s, 1H, Myr-8-H), 3.94 (t, *J* = 7.6Hz, 2H, CH₂), 3.90 (s, 3H, Myr-5-OCH₃), 3.89 (s, 3H, Ar-3-OCH₃), 3.86 (s, 9H, Myr-3',5'-OCH₃ and Ar-4-OCH₃), 3.83 (s, 3H, Myr-7-OCH₃), 3.75 (s, 3H, Myr-4'-OCH₃), 3.08 (t, J = 7.1 Hz, 2H, CH₂), 2.41 (s, 3H, triazole-CH₃), 1.68 – 1.62 (m, 4H, 2×CH₂), 1.49 – 1.43 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.64, 166.14, 164.16, 160.72, 158.59, 153.55, 153.12, 151.92, 149.60, 149.43, 146.45, 140.42, 139.83, 126.09, 125.18, 124.78, 111.97, 109.90, 108.91, 106.16, 96.31, 93.51, 71.83, 60.64, 56.53, 55.97, 32.65, 29.62, 29.14, 24.98, 11.28; HRMS Calcd for C₃₇H₄₃O₁₀N₄S [M+H]⁺: 735.26944, Found: 735.26782.

¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS spectrum of the title compounds

Figure S2. ¹³C NMR spectrum of compound **6a**

Figure S3. HRMS spectrum of compound 6a

Figure S4. ¹H NMR spectrum of compound **6b**

Figure S5. ¹³C NMR spectrum of compound **6b**

Figure S6. HRMS spectrum of compound 6b

Figure S7. ¹H NMR spectrum of compound **6c**

Figure S8. ¹³C NMR spectrum of compound **6c**

Figure S10. ¹H NMR spectrum of compound **6d**

Figure S11. ¹³C NMR spectrum of compound **6d**

Figure S13. ¹H NMR spectrum of compound **6e**

Figure S14. ¹³C NMR spectrum of compound **6e**

Figure S15. HRMS spectrum of compound 6e

Figure S16. ¹H NMR spectrum of compound **6f**

Figure S17. ¹³C NMR spectrum of compound **6f**

Figure S18. HRMS spectrum of compound 6f

Figure S19. ¹H NMR spectrum of compound **6g**

Figure S20. ¹³C NMR spectrum of compound **6g**

Figure S21. HRMS spectrum of compound 6g

Figure S22. ¹H NMR spectrum of compound **6h**

Figure S23. ¹³C NMR spectrum of compound **6h**

Figure S24. HRMS spectrum of compound 6h

Figure S25. ¹H NMR spectrum of compound **6i**

Figure S26. ¹³C NMR spectrum of compound **6i**

Figure S27. HRMS spectrum of compound 6i

Figure S28. ¹H NMR spectrum of compound **6**j

Figure S29. ¹³C NMR spectrum of compound 6j

Figure S31. ¹H NMR spectrum of compound **6k**

Figure S32. ¹³C NMR spectrum of compound **6k**

Figure S33. HRMS spectrum of compound 6k

Figure S35. ¹³C NMR spectrum of compound **6**I

Figure S36. HRMS spectrum of compound 6I

Figure S37. ¹H NMR spectrum of compound **6m**

Figure S38. ¹³C NMR spectrum of compound **6m**

Figure S39. HRMS spectrum of compound 6m

Figure S41. ¹³C NMR spectrum of compound **6n**

Figure S42. HRMS spectrum of compound 6n

Figure S43. ¹H NMR spectrum of compound **60**

Figure S44. ¹³C NMR spectrum of compound **60**

Figure S45. HRMS spectrum of compound 60

Figure S46. ¹H NMR spectrum of compound **6p**

Figure S47. ¹³C NMR spectrum of compound **6p**

Figure S48. HRMS spectrum of compound 6p

Figure S49. ¹H NMR spectrum of compound **6q**

Figure S50. ¹³C NMR spectrum of compound **6q**

Figure S51. HRMS spectrum of compound 6q

Figure S52. ¹H NMR spectrum of compound **6r**

Figure S53. ¹³C NMR spectrum of compound **6r**

Figure S54. HRMS spectrum of compound 6r

Figure S55. ¹H NMR spectrum of compound **6s**

Figure S56. ¹³C NMR spectrum of compound **6s**

Figure S57. HRMS spectrum of compound 6s

Figure S58. ¹H NMR spectrum of compound **6t**

Figure S59. ¹³C NMR spectrum of compound **6t**

Figure S60. HRMS spectrum of compound 6t

Figure S61. ¹H NMR spectrum of compound **6u**

Figure S62. ¹³C NMR spectrum of compound **6u**

Figure S63. HRMS spectrum of compound 6u

Figure S64. ¹H NMR spectrum of compound **6v**

Figure S65. ¹³C NMR spectrum of compound **6v**

Figure S67. ¹H NMR spectrum of compound **6w**

49

Figure S68. ¹³C NMR spectrum of compound **6w**

Figure S69. HRMS spectrum of compound 6w

50