Supplementary Information

Electron Delocalization in Single-Layer Phthalocyanine-Based Covalent Organic Frameworks: A First Principle Study

Hung Q. Pham, ${ }^{*, a, c}$ Dong Q. Le, ${ }^{\text {a }}$ Nguyen-Nguyen Pham-Tran, ${ }^{*, a, b}$ Yoshiyuki Kawazoe, ${ }^{\text {d,e }}$ Duc Nguyen-Manh ${ }^{\text {f }}$
${ }^{\text {a }}$ Faculty of Chemistry, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam.
${ }^{\mathrm{b}}$ Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.
${ }^{\text {c }}$ Current address: Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.
${ }^{d}$ New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan.
${ }^{\mathrm{e}}$ SRM Institute of Science and Technology, Chennai, India.
${ }^{\mathrm{f}}$ Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom.
Table of Contents
Section S1: The optimized basis set for Mo 2
Section S2: Fitting parameters for the deformation potential calculation. 5
Section S3: Calculated Geometric Parameters 6
Section S4: Thermodynamic Quantities 7
Section S6: Intrinsic Charge Mobility for MoS_{2} 7
Section S7: Intrinsic Charge Mobility Calculation for Single-layer NiPc-P, NiPc-2P, and NiPc-3P 10
Section S8: Intrinsic Charge Mobility Calculation for One-dimensional structures of NiPc-P, NiPc-2P, and NiPc-3P 12
Section S9: In-plane stiffness Calculation for Graphene and Pc-P 14

Section S1: The optimized basis set for Mo

Original basis set was taken from the reference:
http://www.tcm.phy.cam.ac.uk/~mdt26/basis sets/Mo basis.txt

MOLYBDENUM BASIS SETS FOR THE CRYSTAL PROGRAM

```
===============================================
```

TCM CRYSTAL basis set library: http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html

Title: Molybdenum Mo/Mo2+ all-electron
Author: M.D. Towler
When: May 1995
Use: Never used - optimization in atom only
Comment: Remove outer diffuse Gaussian(s) and reoptimize valence functions for crystals
Results:
TOTAL HF ENERGY KINETIC ENERGY VIRIAL THEOREM
Mo atom (5D) $-3975.3933041 \quad 3975.0492866 \quad-2.0000865442$
(Roetti/Clementi) -3975.4280 -2.0000422
difference +0.0346 Hartree

Mo2+ ion -3974.717659 -2.0000544997

NB: Atomic energies refer to $5 \mathrm{~s} 2,4 \mathrm{~d} 4$ configuration
NB: Mo2+ basis is same as atom with last three free Gaussian functions removed
NB: In semi-ionic situations it is possibly better to remove only the last two Gaussians from the atomic basis, leaving the shell with exponent 0.1424.

Mo atom

=======
THIS BASIS SET HAS BEEN DEVELOPED FOR THE FREE ATOM CASE AND SHOULD BE CONSIDERED A *STARTING POINT* FOR SOLID-STATE CALCULATIONS. REMOVE ANY DIFFUSE FUNCTIONS (EXPONENTS LESS THAN AROUND 0.1) AND REOPTIMIZE THE REMAINING EXPONENTS/CONTRACTION COEFFICIENTS OF THE VALENCE FUNCTIONS IN THE SITUATION OF INTEREST USING e.g. BILLY or LOPTCG. PLEASE SUMMARIZE RESULTS TO mdt26 at phy.cam.ac.uk
4211
0092.01 .0

```
2803592.8257470.00005
```

444817.8675380 .000355
97623.9965060 .00215
24043.6811470 .0112
6747.5184310 .0473
2131.3839580 .1567
752.7169250 .3532
293.9848524244

```
120.9080200 .1667
```

0178.01 .0 $8300.696289-0.0003360 .001$
1904.293335-0.00655 0.00936
$572.519470-0.05760 .0567$
198.596466-0.1475 0.2205
77.3680340 .20110 .4589
33.8141670 .67590 .4095
15.4913800 .30380 .1253
0168.01 .0
180.935425 0.00529-0.0139
66.122765-0.0394-0.0723
27.487516-0.3338 0.0737
11.6383530 .13470 .9517
5.1521590 .98061 .2527
2.2647320 .28970 .3209
03610.01 .0
293.950 .00793
87.28240 .0589
32.14570 .218
12.97410 .4242
5.38680 .4127
2.2110 .1305
0138.01 .0
4.4173-2.8714 -0.0766
$\begin{array}{llll}1.9173 & 0.2991 & 0.52\end{array}$
$0.8516 \quad 7.92291 .0991$
0110.01 .0
$0.3534 \quad 1.0 \quad 1.0$
0334.01 .0
3.09460 .1237
1.17460 .4234
0.45780 .5112
0310.01 .0
0.17811 .0
0112.01 .0
$0.14241 .0 \quad 1.0$
0110.01 .0
$0.06231 .0 \quad 1.0$
0110.01 .0

$$
\begin{array}{lll}
0.027 & 1.0 & 1.0
\end{array}
$$

Our optimized basis set:
4210
0092.01 .0
2803592.8257470 .00005

```
    444817.8675380.000355
    97623.996506 0.00215
    24043.681147 0.0112
    6747.518431 0.0473
    2131.383958 0.1567
    752.716925 0.3532
    293.9848520.4244
    120.908020 0.1667
0 178.01.0
    8300.696289-0.000336 0.001
    1904.293335-0.00655 0.00936
    572.519470-0.0576 0.0567
    198.596466-0.1475 0.2205
    77.3680340.2011 0.4589
    33.8141670.6759 0.4095
    15.491380 3038 0.1253
0168.01.0
    180.935425 0.00529-0.0139
    66.122765-0.0394-0.0723
    27.487516-0.3338 0.0737
    11.6383530.1347 0.9517
    5.1521590.9806 1.2527
    2.2647320.2897 0.3209
03610.01.0
    293.95 0.00793
    87.2824 0.0589
    32.1457 0.218
    12.9741 0.4242
    5.3868 0.4127
    2.211 0.1305
0138.01.0
    4.4173-2.8714 -0.0766
    1.9173 0.2991 0.52
    0.8516 7.9229 1.0991
0110.01.0
    0.3534 1.0 1.0
0334.01.0
    3.0946 0.1237
    1.1746 0.4234
    0.4578 0.5112
0310.01.0
    0.1781 1.0
0012.01.0
    0.10981.0
0 210.01.0
    0.14241.0
```


Section S2: Fitting parameters for the deformation potential calculation

In our calculation, the relaxation-time τ is assumed to be primarily by the acoustic phonon. The in-plane stiffness is calculated by fitting the total energy per unit cell to a quadratic function of the longitudinal strain:
$\Delta E=E-E_{O}=\frac{1}{2} S_{o} C_{2 D} \times\left(\frac{\Delta l}{l_{o}}\right)^{2} \quad$ for 2D systems
$\Delta E=E-E_{o}=\frac{1}{2} l_{o} C_{1 D} \times\left(\frac{\Delta l}{l_{o}}\right)^{2} \quad$ for 1D systems
where S_{0} and l_{0} are the area and the length of the optimized structures for 2 D and 1 D systems, respectively. The 2D and 1D stiffness are then calculated from the coefficient of the quadratic fitting curves:
$C_{2 D}=2 \times$ coefficient $/ S_{o} \quad$ for 2D systems
$C_{1 D}=2 \times$ coefficient $/ l_{o} \quad$ for 1D systems
The unit for $\mathrm{C}^{2 \mathrm{D}}$ and $\mathrm{C}^{1 \mathrm{D}}$ are $\mathrm{J} / \mathrm{m}^{2}$ and J / m, respectively.
The DP constant E_{1} is calculated in a similar manner. Here, the band edge (VBM or CBM) is also a function of the longitudinal strain:
$E^{V B M}=E_{o}^{V B M}+E_{1} \times \frac{\Delta l}{l_{o}} \quad$ for hole conduction

$$
E^{C B M}=E_{o}^{C B M}+E_{1} \times \frac{\Delta l}{l_{o}} \quad \text { for electron conduction }
$$

The effective mass for hole (or electron) is calculated by fitting the valance band (or conduction band) energy to a parabolic function:

$$
\varepsilon(\vec{k})=\varepsilon_{o}+\frac{\hbar^{2}}{2 m^{*}} k^{2}
$$

It should be noted that effective mass is a tensor and its value will depend on the direction of fitting. To calculate the intrinsic carrier mobility under DP scheme, the fitting of band energy should be performed in the direction of the strain. Moreover, in our procedure we limit the strain $\Delta 1 / l_{0}$ in the range of 5% for stiffness and 1% for DP constant calculation. For effective mass, the wavevector k is limited in the range of $0.05 \mathrm{Bohr}^{-1}$ around the extrema of the bands. These fitting thresholds produce reasonable results and allow one to avoid the uncertainty of DP scheme. ${ }^{1}$ More details about theoretical prediction on carrier mobility of organic-nano materials can be found in the previous literature. ${ }^{2-4}$

Section S3: Calculated Geometric Parameters

Table S1. Lattice constants and fractional coordinates of the irreducible atoms (Space group P4/mmm, No. 123) for the single-layer NiPc-P, NiPc-2P, and NiPc-3P.

$\begin{aligned} & \text { NiPc-P } \\ & \mathrm{a}=10.591 \AA \\ & \hline \end{aligned}$			$\begin{aligned} & \mathbf{N i P c - 2 P} \\ & \mathrm{a}=13.040 \AA \\ & \hline \end{aligned}$			$\begin{aligned} & \text { NiPc-3P } \\ & \mathrm{a}=15.482 \AA \end{aligned}$		
	x	y		x	y		x	y
C	0.60480	0.75876	C	0.09401	0.60891	H	0.00000	0.66015
C	0.88972	0.56637	C	0.58534	0.71041	H	0.15892	0.66196
C	0.00000	0.63627	C	0.81685	0.55412	C	0.00000	0.59004
H	0.00000	0.73838	C	0.00000	0.55549	C	0.07867	0.54674
N	0.72431	0.72431	H	0.09472	0.69197	C	0.15830	0.59198
N	0.50000	0.68157	N	0.68231	0.68231	C	0.57196	0.67733
Ni	0.50000	0.50000	N	0.50000	0.64791	C	0.76704	0.54582
			Ni	0.50000	0.50000	N	0.65362	0.65362
						N	0.50000	0.62476
						Ni	0.50000	0.00000

Table S2. Lattice constants and fractional coordinates of the irreducible atoms (Space group P6/mmm, No. 191) for the single-layer Boroxine-COF, Boronate-COF, Triazine-COF, and CSCOF

Boroxine$\mathrm{a}=15.067 \AA$			Boronate$\mathrm{a}=21.606 \AA$			Triazine$\mathrm{a}=14.498 \AA$		
	x	y		x	y		x	y
H	-0.40519	-0.31101	H	-0.43366	-0.36810	H	-0.40223	-0.30368
C	0.44694	0.05286	O	-0.34718	0.19954	C	0.44457	0.05483
B	0.22602	-0.38699	C	0.46288	0.03685	C	0.22865	-0.38568
O	-0.28087	0.28087	C	-0.33296	0.26953	N	-0.27901	0.27901
C	-0.10778	0.44611	B	0.15669	-0.42165	C	-0.11108	0.44446
			C	-0.07496	0.46252			

CS-COF		
$\mathrm{a}=16.511 \AA$		
	x	y
H	-0.34865	-0.34865
C	-0.41411	-0.41411
N	-0.33184	0.16634
C	0.49844	0.08386
C	-0.33399	0.24450

Section S4: Thermodynamic Quantities

For entropy calculation in CRYSTAL09, only vibrational degree of freedom is considered in partition function since unlike molecules solid systems are not allowed to rotate and translate. The vibration contributions were taken from the phonon calculations.

Table S3. Thermodynamic quantities at 1 atm at different temperatures for formation reactions

$\begin{gathered} \text { Temp } \\ \hline 350 \end{gathered}$		$\Delta \mathrm{S}$ (cal/mol.K)	$\Delta \mathbf{H}$ (kcal/mol)	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$
	NiPc-P	-180	-303	-240
	NiPc-2P	-186	-288	-223
	NiPc-3P	-193	-281	-213
450	NiPc-P	-183	-304	-222
	NiPc-2P	-189	-289	-204
	NiPc-3P	-196	-282	-194
500	NiPc-P	-184	-305	-213
	NiPc-2P	-190	-289	-194
	NiPc-3P	-197	-282	-184

Section S6: Intrinsic Charge Mobility for $\mathrm{MoS}_{\mathbf{2}}$

We apply the same approach as reported in the Cai and coworker's paper ${ }^{4}$ to single-layer trigonal prismatic MoS_{2}. Our calculated band structure from a local Gaussian basis agrees well with their plane wave calculation. It should be noted that the band dispersions are identical irrespective of the exchange-correlation functional used (PBE or B3LYP) even though the band gap are functional dependent. The indirect and direct bandgap by PBE are 1.61 eV (between Γ and M) and 1.73 eV (at K point), respectively. These are in an excellent agreement with the value calculated by the plane wave calculation. The indirect and direct bandgap by B3LYP are 2.26 and 2.44 eV . The previous study shows that bandgap should be direct at K point, while we predict an indirect bandgap at Γ and M point. However, this discrepancy is negligible $(0.1 \mathrm{eV})$ and can be attributed to the perturbation in the lattice constants observed in the previous literature. ${ }^{5}$ To ensure the consistency, we consider the mobility calculation around the K point. Since mobility of MoS_{2} are isotropic with respect to the lattice vectors, only a strain along the a direction is calculated for the sake of comparison. From Table S4, the intrinsic charge carrier mobility for hole and electron are 421.74 and $116.94 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{s}$, respectively. These are approximately two times higher than the value of 200.52 and $72.16 \mathrm{~cm}^{2} / \mathrm{V}$. s from Cai and coworker. Our calculation, however, are consistent with experimental measurement, which provides the optimal mobility in range of $200-500 \mathrm{~cm}^{2} / \mathrm{Vs}$ for the bulk $\mathrm{MoS}_{2}{ }^{6}{ }^{6}$

Figure S4. Single-layer structure of MoS_{2} (a) and its electronic band structure (b) in the orthorhombic lattice. The top right panel depicts the mapping of K point in the hexagonal lattice onto its coordinate along $\Gamma-\mathrm{Y}$ in the orthorhombic lattice. The electronic band structure of MoS_{2} sheet was calculated at the B3LYP (solid curves) and PBE (dashed curves) level of theory. The red curves are the band edges, i.e. VBM (lower) and CBM (upper). Atom colors: Mo, blue; S, yellow.

Figure S5. Relative energy per unit cell (a) and the shift of VB (blue) and CB (red) at K point (b) with respect to the strain along the a direction of single-layer MoS_{2}. The dots are the calculated values and the solid curves are fitted to the calculated data to determine DP constant \mathbf{E}_{1}, and in-plane stiffness \mathbf{C}.

Table S4. DP constant \mathbf{E} 1, in-plane stiffness \mathbf{C}_{20}, effective mass and intrinsic charge mobility for single-layer MoS_{2}

	$\mathbf{E}_{\mathbf{1}}(\mathbf{e V})$	$\mathbf{C}_{2 \mathbf{D}}\left(\mathbf{J} / \mathbf{m}^{\mathbf{2}}\right)$	$\mathbf{m}^{*}\left(\mathbf{m}_{\mathrm{e}}\right)$	$\boldsymbol{\mu}, \mathbf{c m}^{\mathbf{2}} / \mathbf{V s}$
Electron	-9.21	160.04	0.48	116.94
Hole	-3.85	160.04	0.60	421.74

Section S7: Intrinsic Charge Mobility Calculation for Single-layer NiPc-P, NiPc-2P, and NiPc-3P

Figure S6. Relative energy per unit cell (left) and the shift of VBM and CBM (right) with respect to the strain along the a direction of single-layer $\operatorname{NiPc}-\mathrm{P}(\mathrm{a}, \mathrm{b}), \mathrm{NiPc}-2 \mathrm{P}(\mathrm{c}, \mathrm{d})$, and $\mathrm{NiPc}-$ $3 \mathrm{P}(\mathrm{e}, \mathrm{f})$. The fitting curves and the coefficient of determination $\left(\mathbf{R}^{2}\right)$ are also shown.

Table S5. DP constant \mathbf{E}_{1}, in-plane stiffness \mathbf{C}_{20}, effective mass for single-layer NiPc-P, NiPc2P, NiPc-3P

		$\mathbf{E}_{\mathbf{1}}(\mathbf{e V})$	$\mathbf{C}_{\mathbf{2 D}}\left(\mathbf{J} / \mathbf{m}^{\mathbf{2}}\right)$	$\mathbf{m}^{*}\left(\mathbf{m}_{\mathbf{e}}\right)$
NiPc-P	Electron	-3.39	236.97	1.08
	Hole	-2.36	236.97	0.10
NiPc-2P	Electron	-3.25	206.08	0.82
	Hole	-2.62	206.08	0.13
NiPc-3P	Electron	-3.29	179.18	0.60
	Hole	-2.15	179.18	0.16

Table S6. Effective mass along M- Γ for single-layer NiPc-P, NiPc-2P, NiPc-3P

		$\mathbf{m}^{*}\left(\mathbf{m}_{\mathbf{e}}\right)$
NiPc-P	Electron	0.36
	Hole	0.09
NiPc-2P	Electron	0.31
	Hole	0.12
NiPc-3P	Electron	0.30
	Hole	0.14

Section S8: Intrinsic Charge Mobility Calculation for One-dimensional structures of NiPc-P, NiPc-2P, and NiPc-3P

Figure S9. Relative energy of one unit cell (left) and the shift of VBM and CBM (right) with respect to the strain along the a direction of one dimensional structures of NiPc-P (a, b), NiPc-2P (c, d), and NiPc-3P (e, f). The fitting curves and the coefficient of determination ($\mathbf{R}^{\mathbf{2}}$) are also shown.

Table S7. DP constant E1, in-plane stiffness C1D, effective mass, and intrinsic charge mobility for NiPc-P, NiPc-2P, NiPc-3P ribbons

		$\mathbf{E}_{\mathbf{1}}(\mathbf{e V})$	$\mathbf{C}_{\mathbf{1 D}}\left(\mathbf{1 0}^{\mathbf{- 7}} \mathbf{J} / \mathbf{m}\right)$	$\mathbf{m}^{*}\left(\mathbf{m}_{\mathbf{e}}\right)$	$\boldsymbol{\mu}, \mathbf{c m}^{\mathbf{2}} / \mathbf{V s}$
NiPc-P	Electron	-6.70	2.40	0.28	181.27
	Hole	-5.82	2.40	0.15	619.09
NiPc-2P	Electron	-10.32	2.30	0.85	13.58
	Hole	-6.58	2.30	0.15	464.75
NiPc-3P	Electron	-10.17	2.22	0.73	17.04
	Hole	-5.43	2.22	0.14	683.86

Section S9: In-plane stiffness Calculation for Graphene and Pc-P

(a)

(b)

(c)

Figure S10. Single-layer structure of Graphene in the orthogonal unit cell (a) and the relative energy of one unit cell with respect to the strain along the a direction (b) and respect to the strain salong the b direction (c).

Table S8. Calculated geometry and in-plane stiffness $\mathbf{C}_{2 \text { D }}$ for Graphene

Lattice constants	a	$2.452 \AA$
	b	$4.246 \AA$
In-plane stiffness	a direction	$389.56 \mathrm{~J} / \mathrm{m}^{2}$
	b direction	$390.48 \mathrm{~J} / \mathrm{m}^{2}$

Figure S11. Single-layer structure of Pc-P (a) and the relative energy of one unit cell with respect to the strain along the a direction (b) and respect to the strain along the b direction (c). Atom colors: C, grey; N, blue; H, pink.

Table S9. Calculated geometry and in-plane stiffness \mathbf{C}_{2} dor Pc-P

Lattice constants	a	$10.683 \AA$
	b	$10.664 \AA$
In-plane stiffness	a direction	$232.72 \mathrm{~J} / \mathrm{m}^{2}$
	b direction	$216.18 \mathrm{~J} / \mathrm{m}^{2}$

Reference

1. J. Qiao, X. Kong, Z.-X. Hu, F. Yang and W. Ji, Nat. Commun., 2014, 5, 4475.
2. J. Xi, M. Long, L. Tang, D. Wang and Z. Shuai, Nanoscale, 2012, 4, 4348.
3. M. Long, L. Tang, D. Wang, Y. Li and Z. Shuai, ACS Nano, 2011, 5, 2593.
4. Y. Cai, G. Zhang and Y.-W. Zhang, J. Am. Chem. Soc., 2014, 136, 6269.
5. J. Feng, X. Qian, C.-W. Huang and J. Li, Nat. Photonics, 2012, 6, 866.
6. R. Fivaz and E. Mooser, Phys. Rev., 1967, 163, 743.
