Supporting Information

Table S1. Summary of the bi-exponential fitting results for PL lifetime curves of CsPbBr₃ films with various PMOXA concentrations. Time-resolved PL lifetime curves were fitted as a bi-exponential function of time (t):

$$A = A_1 exp^{\binom{-t}{7}} + A_2 exp^{\binom{-t}{7}}$$
(SE1)

Where *A* is the normalized PL intensity, τ_1 and τ_2 stand for the characteristic PL decay lifetimes and A_1 and A_2 are the fractions of the two decay components. The average lifetime (τ_{ave}) was calculated with the A_i and τ_i (*i*= 1, 2) values according to the following equation:

$$\tau_{ave} = A_1 \tau_1 + A_2 \tau_2 \tag{SE2}$$

PMOXA	0%	5%	10%	15%	20%	25%
$\tau_1(ns)$	5.9	6.5	8.4	9.6	10.0	10.0
A ₁	0.506	0.393	0.358	0.279	0.088	0.112
$\tau_2(ns)$	40.7	58.1	61.7	72.3	105.5	100.8
A ₂	0.494	0.607	0.643	0.721	0.912	0.888
$\tau_{ave}(ns)$	36.1	37.9	42.7	69.2	104.7	90.6

Figure S1. AFM images of CsPbBr₃ films with various concentrations of PMOXA. All images are 5 μ m². Roughness in CsPbBr₃ films treated with 0%, 5%, 10%, 15%, 20% and 25%-PMOXA cases are 6.9 nm, 3.2 nm, 2.1 nm, 1.9 nm ,1.6 nm and 2.2 nm, respectively.

Figure S2. EL spectra of the LED CsPbBr₃ containing 20% PMOXA at various current densities.

Emission layer	EL peak (nm)	FWHM (nm)	Max. Luminance (cd/m ²)	Max. EQE (%)	Operational Lifetime	Lifetime measurement Conditions (cd/m ²)	Refs
CsPbBr ₃ +PMOXA	512	18	16648	3.0	$T_{50}\approx 2.4~h$	$L_0 \approx 1000$	This work
CsPbBr ₃ @MABr	525	20	14000	20.3	$T_{50}\approx 0.17h$	$L_0 \approx 7130$	1
FAPbBr ₃	540	22	109000	4.7	$T_{50}\approx 0.12\ h$	$L_0 \approx 10000$	2
CsPbBr ₃ QD	512	21	18600	15.2	$T_{50}\approx 1.2\ h$	$L_0 \approx 1000$	3
$PEA_2Cs_{n-1}Pb_nBr_{3n+1}$	500	24	3259	4.51	$T_{50}\approx 1.2~h$	$L_0 \approx 1000$	4
CsPbBr ₃ +PEO	525	20	51890	4.76	$\rm T_{80}\approx80~h$	$L_0 \approx 1000$	5
MAPbBr ₃	569	32	19420	7.3	$T_{50}\approx5~h$	$L_0 \approx 10000$	6

Table S2. Stability performance of reported green perovskite LEDs tested at a high initial luminance (above 1000 cd/m^2).

Supplementary Reference:

- K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong and Z. Wei, *Nature*, 2018, 562, 245-248.
- 2 J. Wang, C. Song, Z. He, C. Mai, G. Xie, L. Mu, Y. Cun, J. Li, J. Wang, J. Peng and Y. Cao, Adv. Mater., 2018, 30, e1804137.
- 3 S. Yuan, Z.-K. Wang, M.-P. Zhuo, Q.-S. Tian, Y. Jin and L.-S. Liao, ACS Nano, 2018, 12, 9541-9548.
- 4 Y. Shang, G. Li, W. Liu and Z. Ning, Adv. Funct. Mater., 2018, 28, 1801193.
- 5 C. Wu, Y. Zou, T. Wu, M. Ban, V. Pecunia, Y. Han, Q. Liu, T. Song, S. Duhm and B. Sun, *Adv. Funct. Mater.*, 2017, **27**, 1700338.
- 6 H. P. Kim, J. Kim, B. S. Kim, H.-M. Kim, J. Kim, A. R. b. M. Yusoff, J. Jang and M. K. Nazeeruddin, *Adv. Opt. Mat.*, 2017, **5**, 1600920.