Electronic Supplementary Information

Structural versatility of the quasi-aromatic Möbius type zinc(II)-pseudohalide

complexes – experimental and theoretical investigations

Mariusz P. Mitoraj,*^a Farhad Akbari Afkhami,^b Ghodrat Mahmoudi,*^c Ali Akbar Khandar,^b Atash

V. Gurbanov,^{d,e} Fedor I. Zubkov,^f Rory Waterman,^g Maria G. Babashkina,^h Dariusz W. Szczepanik^a,

Himanshu S. Jenaⁱ and Damir A. Safin*h

^aDepartment of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland. E-mail: mitoraj@chemia.uj.edu.pl

^bDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran

^cDepartment of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran. E-mail: mahmoudi_ghodrat@yahoo.co.uk

^dDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, AZ1148, Baku, Azerbaijan

^eCentro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal

^fOrganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

^gDepartment of Chemistry, University of Vermont, 82 University Place, Burlington, VT 05405, USA

^hInstitute of Chemistry, University of Tyumen, Perekopskaya Str. 15a, 625003 Tyumen, Russian Federation. E-mail: damir.a.safin@gmail.com, d.a.safin@utmn.ru

ⁱCOMOC, Department of Chemistry, Ghent University, Krijgslaan 281 - S3B, Ghent - 9000, Belgium

[ZnCl₃(MeOH)]⁻/[Zn₂(µ_{1,1}-N₃)₂(L¹)₂]²⁺

ΔE_{orb} = -11.77 kcal/mol

Fig. S1 (top) Results of the ETS-NOCV calculations describing interaction between $[ZnCl_3(MeOH)]^-$ and $[Zn_2(\mu_{1,1}-N_3)_2(L')_2]^{2+}$ in 2. (bottom) The overall deformation density $\Delta \rho_{orb}$ with the corresponding orbital interaction energies ΔE_{orb} .

Fig. S2 (top) Results of the ETS-NOCV calculations describing interaction between $[ZnCl_3(MeOH)]^-$ and methanol species in **2**. (bottom) The overall deformation density $\Delta \rho_{orb}$ and its NOCV contributions $\Delta \rho_{orb}(i)$ with the corresponding orbital interaction energies ΔE_{orb} and $\Delta E_{orb}(i)$.

Fig. S3 (top) Results of the ETS-NOCV calculations describing Zn–N bonds in the $[Zn_2(\mu_{1,1}-N_3)_2(L^1)_2]^{2+}$ synthon in **2**. (bottom) The overall deformation density $\Delta \rho_{orb}$ with the corresponding orbital interaction energies ΔE_{orb} .

Fig. S4 The global EDDB isocontours and the corresponding electron populations of synthons from 1–3.

Complex	Pentagonal pyramid (C_{5v})	Octahedron (O _h)	Trigonal prism (D _{3h})	Pentagon (D _{5h})	Trigonal bipyramid (D_{3h})	Square pyramid (C_{4v})	Square (D _{4h})	Tetrahedron (T_{d})	Seesaw (C_{2v})
1	14.387	7.891	3.746						
2	20.380	2.701	9.813				32.113	0.610	8.033
3				32.886, 32.446	1.215, 1.184	4.168, 4.057	31.079	0.157	8.724

Table S1. Coordination geometry around the Zn^{II} metal center in the structures of **1–3**, analyzed by the SHAPE 2.1 software

Table S2. Classic hydrogen bond lengths (Å) and angles (°) for 2^a

D–H…A	<i>d</i> (D–H)	d(H…A)	<i>d</i> (D…A)	∠(DHA)
O(1S)–H(1)…O(4S) ^{#1}	0.84	1.80	2.572(8)	153
O(2S)–H(2S)…O(3S) ^{#2}	0.84(8)	1.85(8)	2.689(10)	179(10)
O(3S)–H(3S)…Cl(1) ^{#3}	0.84(8)	2.49(10)	3.185(8)	141(15)
O(4S)–H(4S)…O(2S) ^{#4}	0.84	1.87	2.672(8)	159

^oSymmetry transformations used to generate equivalent atoms: #1 x, y, z; #2 -x, 1 - y, 1 - z; #3 - 1 + x, y, z; #4 1 + x, 1 + y, z.

Table S3. π ··· π interaction distances (Å) and angles (°) for **1–3**^a

Complex	Cg(/)	Cg(J)	d[Cg(<i>I</i>)–Cg(<i>J</i>)]	α	β	γ	slippage
1 ^b	Cg(4)	Cg(4) ^{#1}	3.5117(12)	0.02(10)	12.1	12.1	0.733
	Cg(6)	Cg(7) ^{#2}	3.7951(13)	9.25(11)	31.4	22.2	1.979
	Cg(7)	Cg(6) ^{#2}	3.7950(13)	9.25(11)	22.2	31.4	1.432
2 ^{<i>c</i>}	Cg(6)	Cg(9) ^{#1}	3.962(4)	5.4(3)	27.3	24.8	1.818
	Cg(9)	Cg(6) ^{#1}	3.962(4)	5.4(3)	24.8	27.3	1.661
3 ^{<i>d</i>}	Cg(3)	Cg(12) ^{#1}	4.088(3)	13.2(2)	37.7	24.8	2.502
	Cg(5)	Cg(9) ^{#2}	3.932(3)	11.9(2)	23.0	34.2	1.537
	Cg(9)	Cg(5) ^{#3}	3.932(3)	11.9(2)	34.2	23.0	2.210
	Cg(12)	Cg(3) ^{#4}	4.088(3)	13.2(2)	24.8	37.7	1.712

^{*a*}Cg(*I*)–Cg(*J*): distance between ring centroids; α : dihedral angle between planes Cg(*I*) and Cg(*J*); β : angle Cg(*I*) \rightarrow Cg(*J*) vector and normal to plane *I*; γ : angle Cg(*I*) \rightarrow Cg(*J*) vector and normal to plane *J*; slippage: distance between Cg(*I*) and perpendicular projection of Cg(*J*) on ring *I*.

^bSymmetry transformations used to generate equivalent atoms: #1 2 - x, -y, 2 - z; #2 x, y, z. Cg(4): N(6)–C(41)–C(42)–C(43)–C(44)–C(45), Cg(6): C(31)–C(32)–C(33)–C(34)–C(35)–C(36), Cg(7): C(111)–C(112)–C(113)–C(114)–C(115)–C(116).

^cSymmetry transformations used to generate equivalent atoms: #1 1 - x, 1 - y, -z. Cg(6): C(21)-C(22)-C(23)-C(24)-C(25)-C(26), Cg(9): C(411)-C(412)-C(413)-C(414)-C(415)-C(416).

^dSymmetry transformations used to generate equivalent atoms: #1 1 + *x*, *y*, *z*; #2 1 + *x*, 1 + *y*, *z*; #3 1 -1 + *x*, *y*, *z*; #4 1 -1 + *x*, -1 + *y*, *z*. Cg(3): N(1A)-C(8A)-C(9A)-C(19A)-C(7A)-C(28A), Cg(5): C(1A)-C(2A)-C(3A)-C(4A)-C(15A)-C(12A), Cg(9): N(2B)-C(6B)-C(15B)-C(13B)-C(11B)-C(14B); Cg(12): C(10B)-C(17B)-C(26B)-C(21B)-C(28B)-C(23B).

Table S4. C–H··· π interaction distances (Å) and angles (°) for **1** and **2**^{*a*}

Complex	C–H(/)	Cg(J)	d[H(<i>I)</i> –Cg(J)]	d[C–Cg(J)]	∠(CHCg)	γ
1 ^b	C(25)–H(25A)	Cg(6) ^{#1}	2.77	3.609(2)	150	18.30
	C(44)–H(44A)	Cg(5) ^{#2}	2.87	3.690(2)	148	20.83
2 ^{<i>c</i>}	C(36)–H(36A)	Cg(8) ^{#1}	2.86	3.569(7)	132	9.44

^{*a*}Y(*I*)-Cg(*J*): distance of Y to ring centroid; X-Cg(*J*): distance of X to ring centroid; \angle (XYCg): angle X-Y-Cg; γ : angle Y(*I*) \rightarrow Cg(*J*) vector and normal to plane *J*.

^bSymmetry transformations used to generate equivalent atoms: #1 2 - x, -y, 1 - z; #2 2 - x, -y, 2 - z. Cg(5): C(171)-C(172)-C(173)-C(174)-C(175)-C(176).

^cSymmetry transformations used to generate equivalent atoms: #1 x, y, z. Cg(8): C(111)–C(112)–C(113)–C(114)–C(115)–C(116).