Supporting Information for

The Synthesis of Calcium Arsenate/Iron Arsenate Coating Materials

and Its Application for Arsenic-containing Wastewater Treatment

XRD analysis of sample 3 and 4

Sample 3 was CaHAsO₄@FeAsO₄ which was obtained by the FeCl₃ stability treatment of sample 1 (Fe/As=4:1, pH=4, 50 °C). Sample 4 was Ca₃(AsO₄)₂@FeAsO₄ which was obtained by the FeCl₃ stability treatment of sample 2 (Fe/As=4:1, pH=4, 50 °C). Sample 3 and sample 4 were measured by XRD. Figure 4 shows the XRD pattern of sample 3 and sample 4. Compared with Figure 1, the characteristic peaks of calcium arsenate disappeared completely. The results indicated the calcium arsenate was coated by FeAsO₄. The crystalline of FeAsO₄ was low, so the characteristic peaks of FeAsO₄ were not obviously. This was consisting with the previous reports.¹

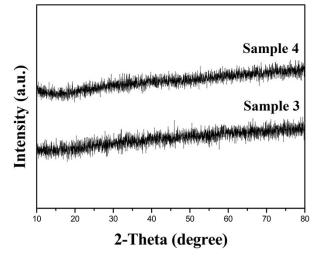


Figure S1. the XRD pattern of sample 3 and sample 4.

Eds analysis of sample 1 and 3

Figure S2 shows the elemental composition of $CaHAsO_4$. The atom percent of calcium is 49.80%, and the percent of arsenic is 50.20%. It is close to the theoretical ratio 1:1. Iron is not detected.

Figure S3 shows the elemental composition of CaHAsO₄@FeAsO₄. The atom percent of iron is 50.57%, and the percent of arsenic is 49.43%. It is close to the theoretical ratio 1:1. Calcium is not detected. The results show the surface of materials should be FeAsO₄, CaHAsO₄ is coated completely. This is consistent with the results of TCLP in the manuscript.

(a) AS					
			Element	Atom percent (%)	
			Са	49.80	
	7		As	50.20	
			Fe	0	
A Aug		·····			
0	5	10	15	20	keV

Figure S2. The results of EDS for CaHAsO₄

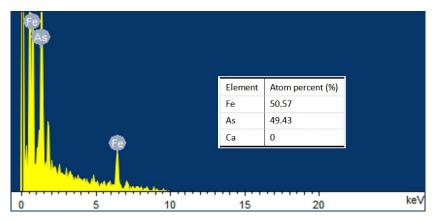


Figure S3. The results of EDS for CaHAsO₄@FeAsO₄

1. E. Krause and V. Ettel, *Hydrometallurgy*, 1989, **22**, 311-337.