Supplementary information for:

Electrical Characterization of Leaf-based Wires and Supercapacitors

Ramesh Y. Adhikari,^a Jack Terrell,^a James Targos,^a Kenneth A. Huffman,^{a,b} Huihui Wang,^b and Joseph Cradlebaugh^c

- ^{a.} Department of Physics
- ^{b.} Department of Engineering
- ^{c.} Department of Chemistry Jacksonville University, Jacksonville, FL 32211, USA Corresponding Author: Ramesh Y. Adhikari, E-mail address: radhikari@ju.edu

Current in Charging RC Circuit: For a charging RC circuit, the current (I(t)) in the circuit at any time (t), when a constant voltage is applied, is given as:

 $I(t) = I_0 e^{-t/RC}$

where, I_0 is the initial current in the circuit, R is the resistance of the resistor in the circuit, and C is the capacitance of the capacitor in the circuit.

Voltage in Charging RC Circuit: For a charging RC circuit, the voltage (V(t)) across the capacitor at any time (t), when a constant current is applied, is given as:

 $V(t) = V_0(1 - e^{-t/RC})$

where, V_0 is the initial voltage in the circuit, R is the resistance of the resistor in the circuit, and C is the capacitance of the capacitor in the circuit.

Fig. S1: A typical current-voltage sweep through the conducting channel from -0.2 V to 0.2V and back to -0.2V.

Fig. S2: Current through the circuit with the leaf-based capacitor over a long period of time. 0.3V bias was applied with the source measure unit.

Fig. S3: Charging and discharging time for the leaf-based capacitor. Discharging time is longer than the charging time, both of which shorten over the multiple cycles and converge.