Supporting Information

SO_2F_2 mediated cascade dehydrogenative Morita-Baylis-Hillman reaction of $C(sp^3)$ -H of primary alcohols with $C(sp^2)$ -H of electrondeficient olefins for assembly of allylic alcohols

Ying Jiang^a Njud S. Alharbi^b Bing Sun,^{a*} and Hua-Li Qin,^{a*}

^aSchool of Chemistry, Chemical Engineering and Life Science, Wuhan University of

Technology, Wuhan, Hubei Province 430070, People's Republic of China

^bBiotechnology Research group, Deportment of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Table of Content

1. General Consideration	S2
2. Screening the optimized reaction conditions	S3
3. General procedure	.S5
4. Product Characterization	.S6
5. Reference	.S14
6. NMR Spectra	.S15

1. General considerations

All reactions were carried out in dried glassware. All reagents were purchased from commercial sources and used without further purification. Unless otherwise specified, NMR spectra were recorded in CDCl₃ or DMSO-d₆ on a 500 or 400 MHz (for ¹H), 471 or 376 MHz (for ¹⁹F), 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (¹H NMR, 0 ppm) as internal standards. The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5 μ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. MS experiments were performed on a TOF-Q ESI or CI/EI instrument. IR experiments were measured and uncorrected.

2. Screening the optimized reaction conditions

OH ΟН K₂CO₃ (1.2 eq.), SO₂F₂ (balloon) DMSO (0.13 M), r.t., 12 h ∏ O then Base (3.0 eq.), r.t., 36 h O_2N O₂N 3a 2a 1a Yield (3a, %)^b Entry Base (3.0 eq.) 1 (Me)₃N 5 2 41 DBU 3 74 DABCO

Table 1 Screening the Base^a

^aGeneral condition: A mixture of (4-nitrophenyl)methanol (**1a**, 0.2 mmol), K₂CO₃ (0.24 mmol, 1.2 eq.) and DMSO (1.5 mL, 0.13 M) under an atmosphere of SO₂F₂ (balloon) was stirred at room temperature for 12 hours before methyl acrylate **2a** (0.6 mmol, 3.0 eq.), Base (3.0 eq.) were added and then the mixture was stirred at room temperature for an additional 36 hours ^bHPLC yields using the pure methyl 2-(hydroxy(4-nitrophenyl)methyl)acrylate (**3a**, 0.2 mmol) as the external standard (t_R = 3.021min, $\lambda_{max} = 272.5$ nm, MeOH/H₂O = 70 : 30 (v / v)).

Table 2 Screening the temperature^a

OH O ₂ N 1a	+ H 0 2a	K ₂ CO ₃ (1.2 eq.), SO ₂ F ₂ (balloon) DMSO (0.13 M), r.t., 12 h DABCO (3.0 eq.), T, 36 h	OH O O ₂ N 3a
Entry		T (°C)	Yield (3a , %) ^b
1		rt	74
2		40	83
3		50	77
4		60	71

^aGeneral reaction condition: A mixture of (4-nitrophenyl)methanol (**1a**, 0.2 mmol), K_2CO_3 (0.24 mmol, 1.2 eq.) and DMSO (1.5 mL, 0.13 M) under an atmosphere of SO_2F_2 (balloon) was stirred at room temperature for 12 hours before methyl acrylate **2a**

(0.6 mmol, 3.0 eq.), DABCO (0.6 mmol, 3.0 eq.) were added and then the mixture was stirred at corresponding temperature for an additional 36 hours ^bHPLC yields using the pure methyl 2-(hydroxy(4-nitrophenyl)methyl)acrylate (**3a**, 0.2 mmol) as the external standard ($t_R = 3.021 \text{ min}$, $\lambda_{max} = 272.5 \text{ nm}$, MeOH/H₂O = 70 : 30 (v / v)).

OH H +	H O O 2a	K ₂ CO ₃ (1.2 eq.), SO ₂ F ₂ (balloon) DMSO (0.13 M), r.t., 12 h DABCO (X eq.), 40 °C, 36 h	OH O O ₂ N 3a
Entry	-	DABCO Loading (X eq.)	Yield (3a , %) ^b
1		1	42
2		2	73
3		3	83
4		4	82
5		5	85

Table 3 Screening the loading amount of DABCO^a

^aGeneral reaction condition: A mixture of (4-nitrophenyl)methanol (**1a**, 0.2 mmol), K₂CO₃ (0.24 mmol, 1.2 eq.) and DMSO (1.5 mL, 0.13 M) under an atmosphere of SO₂F₂ (balloon) was stirred at room temperature for 12 hours before methyl acrylate **2a** (0.6 mmol, 3.0 eq.), DABCO (X eq.) were added and then the mixture was stirred at 40 ^oC for an additional 36 hours ^bHPLC yields using the pure methyl 2-(hydroxy(4-nitrophenyl)methyl)acrylate (**3a**, 0.2 mmol) as the external standard (t_R = 3.021 min, $\lambda_{max} = 272.5$ nm, MeOH/H₂O = 70 : 30 (v / v)).

Table 4 Screening Methyl acrylate Loading^a

2	2	62
3	3	83
4	4	84
5	5	84

^aGeneral reaction condition: A mixture of (4-nitrophenyl)methanol (**1a**, 0.2 mmol), K₂CO₃ (0.24 mmol, 1.2 eq.) and DMSO (1.5 mL, 0.13 M) under an atmosphere of SO₂F₂ (balloon) was stirred at room temperature for 12 hours before methyl acrylate **2a** (X eq.), DABCO (0.6 mmol, 3.0 eq.) were added and then the mixture was stirred at 40 °C for an additional 36 hours ^bHPLC yields using the pure methyl 2-(hydroxy(4-nitrophenyl)methyl)acrylate (**3a**, 0.2 mmol) as the external standard (t_R = 3.021 min, $\lambda_{max} = 272.5$ nm, MeOH/H₂O = 70 : 30 (v / v))..

3. General procedure

Alcohol **1** (1.0 mmol, 1.0 eq.), K_2CO_3 (165.9 mg, 1.2 mmol, 1.2 eq.), and DMSO (7.5 mL) added to an oven-dried reaction tube (20 ml) that was equipped with a stirrer bar. The tube was fitted with a plastic stopper and SO_2F_2 gas was introduced into the stirring reaction mixture by bubbling from an SO_2F_2 balloon at room temperature for 12 h. After the alcohol was completely consumed (by TLC), **2** (3.0 mmol, 3.0 eq.), DABCO (3.0 mmol, 3.0 eq.) were added into the reaction mixture, and reacted at 40 °C for 6-120 hours. After that, the reaction diluted with water and extracted with EtOAc (3×20 ml) and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated to dryness. The residue was purified by column chromatography on silica gel to afford the desired **3**.

4. Product Characterization

3a

Methyl 2-(hydroxy(4-nitrophenyl)methyl)acrylate (**3a**). White solid (190 mg from **1a**, isolated yield 80%). HPLC yield 83% (using methyl 2-(hydroxy(4-nitrophenyl)methyl)acrylate (**3a**) ($t_R = 3.021 \text{ min}$, $\lambda_{max} = 272.5 \text{ nm}$, MeOH/H₂O = 70 : 30 (v / v))as the external standard). The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 8.18 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 6.38 (s, 1H), 5.88 (s, 1H), 5.62 (d, *J* = 6.0 Hz, 1H), 3.73 (s, 3H), 3.44 (d, *J* = 6.1 Hz, 1H)

Methyl 2-(hydroxy(2-nitrophenyl)methyl)acrylate (**3b**). Yellow oil (142 mg from **1b**, isolated yield 60%). The NMR data is identical to that reported in literature.^{[2] 1}H NMR (CDCl₃, 500 MHz) δ 7.93(d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 6.34 (s, 1H), 6.19 (s, 1H), 5.71 (s, 1H), 3.71 (s, 3H).

Methyl 2-((4-cyanophenyl)(hydroxy)methyl)acrylate (**3c**). Colorless oil (195 mg from **1c**, isolated yield 90%). The NMR data is identical to that reported in literature.^{[3] 1}H NMR (CDCl₃, 500 MHz) δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 6.35 (s, 1H), 5.87 (s, 1H), 5.56 (d, *J* = 4.6 Hz, 1H), 3.70 (s, 3H), 3.59 (d, *J* = 5.3 Hz, 1H).

Methyl 2-((3-cyanophenyl)(hydroxy)methyl)acrylate (**3d**). Colorless oil (187mg from **1d**, isolated yield 86%). The NMR data is identical to that reported in literature.^[4] ¹H NMR (CDCl₃, 500 MHz) δ 7.67 (s, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 6.37 (s, 1H), 5.88 (s, 1H), 5.55 (d, *J* = 4.5 Hz, 1H), 3.72

(s, 3H), 3.50 (d, *J* = 5.4 Hz, 1H).

Methyl 2-((4-chlorophenyl)(hydroxy)methyl)acrylate (**3e**). Colorless oil (147 mg from **1e**, isolated yield 65%). The NMR data is identical to that reported in literature.^{[4] 1}H NMR (CDCl₃, 500 MHz) δ 7.30 (s, 4H), 6.33 (s, 1H), 5.83 (s, 1H), 5.51 (s, 1H), 3.71 (s, 3H), 3.26 (brs, 1H).

Methyl 2-((4-bromophenyl)(hydroxy)methyl)acrylate (**3f**). Light yellow oil (163 mg from **1f**, isolated yield 60%). The NMR data is identical to that reported in literature.^[4] ¹H NMR (CDCl₃, 500 MHz) δ 7.43 (d, *J* = 8.2 Hz 2H), 7.21 (d, *J* = 8.3 Hz, 2H), 6.31 (s, 1H), 5.83 (s, 1H), 5.47 (s, 1H), 3.69 (s, 3H), 3.45 (brs, 1H).

3g

Methyl 2-(hydroxy(4-iodophenyl)methyl)acrylate (**3g**). White solid (200 mg from **1g**, isolated yield 63%). M. p. 108~110 °C, ¹H NMR (CDCl₃, 500 MHz) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.34 (s, 1H), 5.83 (s, 1H), 5.49 (d, *J* = 3.2 Hz, 1H), 3.73 (s, 3H), 3.14 (d, *J* = 5.0 Hz, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.8, 141.7, 141.2, 137.7, 128.7, 126.6, 93.6, 73.0, 52.2. ESI-MS HRMS calculated for C₁₁H₁₂IO₃ [M+H]⁺ 318.9831, found: 318.9837.

Methyl 2-(hydroxy(4-(trifluoromethyl)phenyl)methyl)acrylate (**3h**). Colorless oil (208 mg from **1h**, isolated yield 80%). The NMR data is identical to that reported in literature.^[4] ¹H NMR (CDCl₃, 500 MHz) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 6.37 (s, 1H), 5.85 (s, 1H), 5.59 (d, *J* = 5.2 Hz, 1H), 3.73 (s, 3H), 3.36 (d, *J* = 5.8

Hz, 1H).

Methyl 2-(hydroxy(3-(trifluoromethyl)phenyl)methyl)acrylate (**3i**). Light yellow oil (218 mg from **1i**, isolated yield 84%). The NMR data is identical to that reported in literature.^[5] ¹H NMR (CDCl₃, 500 MHz) δ 7.64 (s, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.8 Hz, 1H), 6.36 (s, 1H), 5.85 (s, 1H), 5.58 (s, 1H), 3.71 (s, 3H), 3.49 (brs, 1H).

Methyl 4-(1-hydroxy-2-(methoxycarbonyl)allyl)benzoate(**3j**). White solid (175 mg from **1j**, isolated yield 70%). The NMR data is identical to that reported in literature.^[6] ¹H NMR (CDCl₃, 500 MHz) δ 8.00 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.3 Hz, 2H), 6.35 (s, 1H), 5.83 (s, 1H), 5.59 (d, *J* = 5.2 Hz, 1H), 3.90 (s, 3H), 3.71 (s, 3H), 3.33 (d, *J* = 5.8 Hz, 1H).

Methyl 2-(hydroxy(phenyl)methyl)acrylate (**3k**). Light yellow oil (81 mg from **1k**, isolated yield 42%). The NMR data is identical to that reported in literature.^{[5] 1}H NMR (CDCl₃, 500 MHz) δ 7.38-7.33 (m, 4H), 7.28 (t, *J* = 7.1 Hz, 1H), 6.34 (s, 1H), 5.84 (s, 1H), 5.56 (s, 1H), 3.72 (s, 3H), 3.13 (brs, 1H).

Methyl 2-([1,1'-biphenyl]-4-yl(hydroxy)methyl)acrylate (**3**l). White solid (161 mg from **1**l, isolated yield 60%). The NMR data is identical to that reported in literature.^[7] ¹H NMR (CDCl₃, 500 MHz) δ 7.60-7.58 (m, 4H) 7.47-7.43 (m, 4H), 7.35 (t, *J* = 7.3 Hz, 1H), 6.38 (s, 1H), 5.91 (s, 1H), 5.63 (d, *J* = 5.3 Hz, 1H), 3.75 (s, 3H), 3.08 (d, *J* = 5.5 Hz, 1H).

Methyl 2-(hydroxy(4-(methylthio)phenyl)methyl)acrylate (**3m**). White solid (95 mg from **1m**, isolated yield 40%) The NMR data is identical to that reported in literature.^[8] ¹H NMR (CDCl₃, 500 MHz) δ 7.29 (d, *J* = 8.3 Hz, 2H) 7.22 (d, *J* = 8.3 Hz, 2H), 6.33 (s, 1H), 5.85 (s, 1H), 5.52 (d, *J* = 4.3 Hz, 1H), 3.72 (s, 3H), 3.05 (d, *J* = 5.2 Hz, 1H), 2.47 (s, 3H).

Methyl 2-(hydroxy(naphthalen-2-yl)methyl)acrylate (**3n**). White solid (155 mg from **1n**, isolated yield 64%). The NMR data is identical to that reported in literature.^{[5] 1}H NMR (CDCl₃, 500 MHz) δ 7.86-7.82 (m, 4H) 7.50-7.46 (m, 3H), 6.38 (s, 1H), 5.89 (s, 1H), 5.74 (s,1H), 3.72 (s, 3H), 3.25 (brs, 1H).

Methyl 2-(hydroxy(quinolin-6-yl)methyl)acrylate (**30**). White solid (217 mg from **10**, isolated yield 89%). M.p. 119~120 °C. ¹H NMR (CDCl₃, 500 MHz) δ 8.79 (dd, *J* = 4.2 Hz, 1.6 Hz, 1H), 8.10 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 8.9 Hz, 1H), 7.82 (s, 1H), 7.66 (dd, *J* = 8.6 Hz, 1.6 Hz, 1H), 7.35 (dd, *J* = 8.2 Hz, 4.2 Hz, 1H), 6.38 (s, 1H), 5.96 (s, 1H), 5.77 (s, 1H), 4.25 (brs, 1H), 3.69 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.8, 150.4, 147.8, 142.0, 140.0, 136.5, 129.5, 128.5, 128.1, 126.5, 125.5, 121.4, 72.8, 52.1. ESI-MS HRMS calculated for C₁₄H₁₄NO₃ [M+H]⁺ 244.0974, found: 244.0963.

Methyl 2-(benzo[b]thiophen-2-yl(hydroxy)methyl)acrylate (**3p**). Yellow solid (129 mg from **1p**, isolated yield 52%). M.p. 91~92 °C. ¹H NMR (CDCl₃, 500 MHz) δ 7.80 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.35-7.29 (m, 2H), 7.20 (s, 1H), 6.42 (s, 1H),

6.02 (s, 1H), 5.83 (d, J = 7.0 Hz, 1H), 3.77 (s, 3H), 3.53 (d, J = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.6, 146.6, 140.8, 139.8, 139.7, 126.9, 124.42, 124.39, 123.8, 122.5, 121.3, 70.5, 52.3. ESI-MS HRMS calculated for C₁₄H₁₄NO₃ [M+H]⁺ 244.0974, found: 244.0963.

Methyl 2-((4-chloropyridin-2-yl)(hydroxy)methyl)acrylate (**3q**). Yellow oil (175 mg from **1q**, isolated yield 77%). ¹H NMR (CDCl₃, 500 MHz) δ 8.39 (d, *J* = 5.4 Hz, 1H), 7.46 (s, 1H), 7.19 (dd, *J* = 5.2 Hz, 1.3 Hz, 1H), 6.36 (s, 1H), 5.95 (s, 1H), 5.55 (s, 1H), 4.66 (brs, 1H), 3.71 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.5, 161.7, 149.3, 145.1, 141.1, 127.6, 123.2, 121.8, 72.5, 52.1. ESI-MS HRMS calculated for C₁₀H₁₁ClNO₃ [M+H]⁺228.0427, found: 228.0423.

Methyl 2-((6-bromopyridin-2-yl)(hydroxy)methyl)acrylate (**3r**). Yellow oil (182 mg from **1r**, isolated yield 67%). ¹H NMR (CDCl₃, 500 MHz) δ 7.52 (t, *J* = 7.8 Hz, 1H), 7.40-7.37 (m, 2H), 6.36 (s, 1H), 5.95 (s, 1H), 5.57 (d, *J* = 6.4 Hz, 1H), 4.32 (d, *J* = 6.8 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.6, 161.5, 141.2, 141.0, 139.3, 127.6, 127.2, 120.2, 72.3, 52.1. ESI-MS HRMS calculated for C₁₀H₁₁BrNO₃ [M+H]⁺ 271.9922, found: 271.9918.

Methyl 2-(hydroxy(6-methylpyridin-2-yl)methyl)acrylate (**3s**). White solid (161 mg from **1s**, isolated yield 78%). M.p. 80~82 °C. ¹H NMR (CDCl₃, 500 MHz) δ 7.52 (t, J

= 7.8 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.03 (d, J = 7.7 Hz, 1H), 6.31 (d, J = 0.4 Hz, 1H), 5.92 (s, 1H), 5.59 (s, 1H), 5.26 (brs, 1H), 3.72 (s, 3H), 2.52 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.7, 158.5, 157.2, 142.3, 137.2, 126.7, 122.2, 118.1, 71.4, 51.9, 24.3.IR (KBr): 3428, 3080, 2900, 1723, 1636, 1599, 1467, 1435, 1323, 1283, 1199, 1159, 1055, 992, 750, 711cm⁻¹ ESI-MS HRMS calculated for C₁₁H₁₄NO₃ [M+H]⁺ 208.0974, found: 208.0965.

Methyl 2-((3,5-dimethyl-4-nitropyridin-2-yl)(hydroxy)methyl)acrylate (**3t**). Yellow solid (170 mg from **1t**, isolated yield 64%). M.p. 83~84 °C. NMR (CDCl₃, 500 MHz) δ 8.43 (s, 1H), 6.34 (s, 1H), 5.73 (d, *J* = 4.8 Hz, 1H), 5.60 (s, 1H), 4.66 (d, *J* = 6.5 Hz, 1H), 3.76 (s, 3H), 2.29 (s, 3H), 2.21 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.4, 158.2, 157.9, 148.4, 141.3, 127.1, 123.0, 121.2, 69.6, 52.2, 14.1, 12.4. ESI-MS HRMS calculated for C₁₂H₁₅N₂O₅ [M+H]⁺ 267.0981, found: 267.0974.

Methyl 2-(hydroxy(4-methoxy-3,5-dimethylpyridin-2-yl)methyl)acrylate (**3u**). Yellow solid (156 mg from **1u**, isolated yield 62%). M.p. 76~78 °C. ¹H NMR (CDCl₃, 500 MHz) δ 8.22 (s, 1H), 6.24 (s, 1H), 5.67 (s, 1H), 5.39 (s, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 2.26 (s, 3H), 2.13 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 166.9, 164.5, 156.9, 148.1, 142.3, 126.5, 125.9, 123.9, 68.7, 60.1, 52.1, 13.4, 10.6. ESI-MS HRMS calculated for C₁₃H₁₈NO₄ [M+H]⁺ 252.1236, found: 252.1230.

4-(2-cyano-1-hydroxyallyl)benzonitrile (**3v**). Yellow oil (110 mg from **1v**, isolated yield 60%). ¹H NMR (CDCl₃, 500 MHz) δ 7.65 (d, *J* = 8.1 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 6.13 (s, 1H), 6.05 (s, 1H), 5.35 (s, 1H), 3.80 (brs, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 144.5, 132.8, 130.9, 127.3, 125.7, 118.5, 116.5, 112.7, 73.5. ESI-MS HRMS calculated for C₁₁H₉N₂O [M+H]⁺ 185.0715, found: 185.0720.

Tert-butyl 2-((4-cyanophenyl)(hydroxy)methyl)acrylate (**3w**). Yellow solid (181 mg from **1w**, isolated yield 70%). M.p. 54~56 °C. ¹H NMR (CDCl₃, 500 MHz) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 6.28 (s, 1H), 5.73 (s, 1H), 5.51 (d, *J* = 6.1 Hz, 1H), 3.42 (d, *J* = 6.4 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (CDCl₃, 126 MHz) δ 165.4, 147.2, 142.6, 132.3, 127.3, 126.4, 118.9, 111.6, 82.4, 73.3, 28.1. ESI-MS HRMS calculated for C₁₅H₁₈NO₃ [M+H]⁺ 260.1287, found: 260.1280.

4-(hydroxy(6-oxocyclohex-1-en-1-yl)methyl)benzonitrile (**3x**). Yellow oil (159 mg from **1x**, isolated yield 70%). ¹H NMR (CDCl₃, 500 MHz) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 6.82 (t, *J* = 4.1 Hz, 1H), 5.54 (d, *J* = 4.9 Hz, 1H), 3.68 (d, *J* = 5.7 Hz, 1H), 2.43-2.39 (m, 4H), 2.01-1.95 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 200.0, 148.0, 147.6, 140.4, 132.1, 127.1, 118.9, 111.1, 71.7, 38.4, 25.8, 22.4. ESI-MS HRMS calculated for C₁₄H₁₄NO₂ [M+H]⁺ 228.1025, found: 228.1024.

Methyl 3-hydroxy-2-methylene-6-phenylhexanoate (**3y**). Colorless oil (145 mg from **1y**, isolated yield 62%). ¹H NMR (CDCl₃, 500 MHz) δ 7.28 (t, *J* = 7.5 Hz, 2H), 7.19-7.18 (m, 3H), 6.23 (s, 1H), 5.79 (s, 1H), 4.43 (s, 1H), 3.77(s, 3H), 2.67-2.65 (m, 3H), 1.82-1.67 (m, 4H). ¹³C NMR (CDCl₃, 126 MHz) δ 167.1, 142.5, 142.3, 128.5, 128.4, 125.8, 125.1, 71.5, 51.9, 35.8, 35.7, 27.6. IR (KBr): 3437, 3001, 2949, 1717, 1629, 1603, 1453, 1439, 1398, 1287, 1195, 1157, 1087, 991, 750, 700 cm⁻¹ ESI-MS HRMS calculated for C₁₄H₁₉O₃ [M+H]⁺ 235.1335, found: 235.1321.

Methyl (S,Z)-3-hydroxy-2-methylenedodec-6-enoate (**3z**). Colorless oil (154 mg from **1z**, isolated yield 64%). ¹H NMR (CDCl₃, 500 MHz) δ 6.23 (s, 1H), 5.81 (s, 1H), 5.46-5.34 (m, 2H), 4.41 (t, *J* = 6.5 Hz, 1H), 3.78 (s, 3H), 2.58 (brs, 1H), 2.22-2.10 (m, 2H), 2.05-2.01 (m, 2H), 1.73-1.67 (m, 2H), 1.36-1.26 (m, 6H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 167.1, 142.5, 131.2, 128.7, 125.2, 71.5, 52.0, 36.2, 31.6, 29.5, 27.3, 23.8, 22.7, 14.2. ESI-MS HRMS calculated for C₁₄H₂₅O₃ [M+H]⁺241.1804, found: 241.1896.

Methyl (S,Z)-3-hydroxy-2-methyleneundec-8-enoate (**3aa**). Colorless oil (152 mg from **1aa**, isolated yield 67%). ¹H NMR (CDCl₃, 500 MHz) δ 6.21 (d, *J* = 0.8 Hz, 1H), 5.78 (t, *J* = 1.1 Hz, 1H), 5.37-5.27 (m, 2H), 4.38 (dd, *J* = 7.1 Hz, 5.9 Hz, 1H), 3.77 (s, 3H), 2.62 (brs, 1H), 2.04-1.96 (m, 4H), 1.69-1.58 (m, 2H), 1.48-1.32 (m, 4H), 0.94 (t, *J* =

7.6 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 167.1, 142.7, 131.9, 129.0, 125.0, 71.8, 51.9, 36.3, 29.6, 27.1, 25.6, 20.6, 14.4. ESI-MS HRMS calculated for C₁₃H₂₃O₃ [M+H]⁺ 227.1647, found: 227.1638.

Methyl (Z)-3-hydroxy-2-methyleneundec-5-enoate (**3ab**). Colorless oil (147 mg from **1ab**, isolated yield 65%). ¹H NMR (CDCl₃, 500 MHz) δ 6.19 (d, J = 0.7 Hz, 1H), 5.78 (s, 1H), 5.36-5.26 (m, 2H), 4.37 (d, J = 5.0 Hz, 1H), 3.75 (s, 3H), 2.70 (d, J = 5.1 Hz, 1H), 2.03-1.97 (m, 4H), 1.68-1.56 (m, 2H), 1.48-1.29 (m, 4H), 0.92 (t, J = 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 167.1, 142.7, 131.8, 129.0, 125.0, 71.6, 51.9, 36.2, 29.6, 27.0, 25.5, 20.5, 14.4. ESI-MS HRMS calculated for C₁₃H₂₃O₃ [M+H]⁺ 227.1647, found: 227.1637.

5. Reference

- [1] F. Schaufelberger and O. Ramstrom, J. Am. Chem. Soc., 2016, 138, 7836.
- [2] A. Latorre, J. A. Saez, S. Rodríguez and F. V. Gonzalez, Tetrahedron. 2014, 70, 97.
- [3] P. V. Ramachandran and D. R. Nicponski, Chem. Commun., 2014, 50, 15216.
- [4] X. Han, Y. Wang, F. Zhong and Y. Lu, Org. Biomol. Chem., 2011, 9, 6734.
- [5] B. Zhu, L. Yan, Y. Pan, R. Lee, H. Liu, Z. Han, K.-W. Huang, C.-H. Tan and Z. Jiang, J. Org. Chem., 2011, 76, 6894.
- [6] S.-R. Sheng, F.-F. Huang, S.-Y. Lin, X.-L. Liu and X. Huang, *Synthesis* 2007, 9, 1373.
- [7] C. Rasson, A. Stouse, A. Boreux, V. Cirriez and O. Riant, *Chem. Eur. J.*, 2018, 24, 9234.
- [8] G. W. Amarante, and F. Coelho, *Tetrahedron*. 2010, 66, 6749.

6. NMR Spectra

3a, ¹H NMR, 500 MHz, CDCl₃

3g, ¹H NMR, 500 MHz, CDCl₃

3h, ¹H NMR, 500 MHz, CDCl₃

3i, ¹H NMR, 500 MHz, CDCl₃

S25

3l, ¹H NMR, 500 MHz, CDCl₃

3m, ¹H NMR, 500 MHz, CDCl₃

S30

30, ¹³C NMR, 126 MHz, CDCl₃

3p, ¹H NMR, 500 MHz, CDCl₃

3q, ¹H NMR, 500 MHz, CDCl₃

3r, ¹³C NMR, 126 MHz, CDCl₃

3s, ¹H NMR, 500 MHz, CDCl₃

S39

3t, ¹H NMR, 500 MHz, CDCl₃

3v, ¹H NMR, 500 MHz, CDCl₃

3v, ¹³C NMR, 126 MHz, CDCl₃

3w, ¹H NMR, 500 MHz, CDCl₃

3w, ¹³C NMR, 126 MHz, CDCl₃

S48

3y, ¹H NMR, 500 MHz, CDCl₃

S51

3z, ¹H NMR, 500 MHz, CDCl₃

3z, ¹³C NMR, 126 MHz, CDCl₃

3aa, ¹H NMR, 500 MHz, CDCl₃

3ab, ¹H NMR, 500 MHz, CDCl₃

