Electronic Supplementary Information

A Cobalt (II) Chain Based on Pymca Generated in Situ from the Hydrolysis of 2-Cyanopyrimidine: Spin Canting and Magnetic relaxation

Jie Zhang,^a Qian-Nan Zhao,^a Feng Yang,^b Lei Yin,^b Miao-Miao Li,^a Zhenxing Wang,^b Zhongwen Ouyang,^b Zheng-Cai Xia, *^b and Tuo-Ping Hu*^a

^a Department of Chemistry, College of Science, North University of China, Xueyuan Road 3,

Taiyuan 030051, PR China.

^b Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, PR China

 Table S1. Crystallographic data of complex 1

complex	1
Empirical formula	$C_{10}H_{18}Co_2N_4O_{14}S$
Formula weight	568.20
Crystal system	Tetragonal
space group	$P^{\bar{4}2}{}_{1}c$
<i>a</i> (Å)	9.5941(13)
<i>b</i> (Å)	9.5941(13)
<i>c</i> (Å)	20.329(3)
α (°)	90
β (°)	90
γ (°)	90
$V(Å^3)$	1871.2(6)
<i>T</i> (K)	296(2)
Ζ	4
$ \rho_{\text{calcd}} (\text{g cm}^{-3}) $	2.017
F(000)	1152
□ (Å)	0.71073
R(int)	0.0568
final R_1 , $\Box R_2 [I > 2 \Box (I)]$	0.0568, 0.1387
R_1 , $\Box R_2$ all data	0.0630, 0.1387
Data / restraints / parameters	2103 / 1 / 143
Largest diff. Peak and hole[e·Å-3]	0.924 and -0.573
goodness of fit, GOF	1.071
CCDC number	1949664

		Complex 1		
	Co1 -O1W ⁱ	2.077(6)	Co1-N1	2.158(6)
	Co1-O1W	2.077(6)	Co1-O1 ⁱ	2.108(5)
	Co1-N1 ⁱ	2.158(6)	Co1-O1	2.108(5)
	Co2-O2 ⁱⁱ	2.119(6)	Co2-N2 ⁱⁱ	2.141(6)
	Co2-O2W ⁱⁱ	2.069(8)	Co2-O2	2.119(6)
	Co2-O2W	2.069(8)	Co2-N2	2.141(6)
	O1-Co1-N1 ⁱ	86.8(2)	O1-Co1-N1	78.4(2)
	O1 ⁱ -Co1-N1	86.8(2)	O1 ⁱ -Co1-O1	157.0(3)
	O1W ⁱ⁻ Co1-O1W	88.1(3)	O1W-Co1-O1 ⁱ	93.4(2)
	O2W ⁱⁱ -Co2-O2W	88.7(5)	O2W-Co2-N2	99.8(2)
	O2W-Co2-N2 ⁱⁱ	91.0(2)	O2-Co2-N2	78.3(2)
	O2W-Co2-O2 ⁱⁱ	87.8(3)	O2-Co2-N2 ⁱⁱ	91.6(2)
	O1W-Co1-N1	174.3(2)	O1W-Co1-O1	103.1(2)
	O1W ⁱ -Co1-N1	86.3(2)	O1W ⁱ -Co1-O1	93.4(2)
	O1W-Co1-N1 ⁱ	86.3(2)	N1-Co1-N1 ⁱ	99.3(3)
	O1W ⁱ -Co1-N1 ⁱ	174.3(2)	O1 ⁱ -Co1-N1 ⁱ	78.4(2)
	O1Wi-Co1-O1i	103.1(2)	O2W ⁱⁱ -Co2-N2	91.0(2)
	O2W ⁱⁱ -Co2-O2	87.8(3)	O2W ⁱⁱ -Co2-N2 ⁱⁱ	99.8(2)
	O2W ⁱⁱ -Co2-O2 ⁱⁱ	175.9(3)	O2-Co2-O2 ⁱⁱ	95.8(3)
	O2W-Co2-O2	175.9(3)		
S	ymmetry transformations use	ed to generate equiv	valent atoms: i: -x+1, -y	/, z, ii: -x+1, -
-		v+1 z		

 Table S2. Bond lengths [Å] and angles [°] for complex 1.

Hydrogen bonds for complex **1**. Bond lengths [Å] and angles [°].

D—H…A	d(D—H)	d(H···A)	$d(D \cdots A)$	<(D—H···A)
O(1W)—H(1A) ···O(4)	0.85	1.91	2.735(9)	164
O(1W)—H(1B) ····O(2)	0.85	1.96	2.793(8)	168
O(2W)—H(2A) ····O(3)	0.87	2.06	2.913(12)	168
O(2W)—H(2B) ····O(3W)	0.74	2.34	2.961(14)	143
O(3W)—H(10A)····O(4)	0.85	2.16	2.847(16)	137
O(3W)—H(10B) ···O(3)	0.85	2.40	2.683(12)	100

Fig. S1 The PXRD pattern of 1.

Fig. S2 The TG curves of complex 1.

Fig. S3 The PXRD pattern of the 1 heated to 350 °C.

Fig. S4 The distorted octahedral coordination geometry of Co1 and Co2 (N1-Co1-N1i = $99.3(3)^{\circ}$ (left), N2-Co2-N2i = $164.9(3)^{\circ}$) (right).

Fig. S5 Frequency dependence of in-phase (left) and temperature dependence of in-phase (right) components of the ac susceptibility for the complex **1** in zero applied static field with a 5 Oe oscillating field at a frequency of 1–1488 Hz.

Fig. S6 (a) A plot of cole-cole curve, (b) the plot of $\ln \tau$ vs. 1/T.

Fig. S7 The plot of τ vs. *T*p for **1** was fitted by the conventional critical scaling law of the spin dynamics as described by $\tau = \tau_0 \left[(T_P - T_f)/T_f \right]^{-zv}$.