Supplementary Information

Nitrogen-Doped Graphene-TiO_xN_y Nanocomposite Electrode for Highly Efficient Capacitive Deionization

Yuchen Wu^{a,b}, Gaopeng Jiang^b, Qian Li^b, Zisheng Zhang^{*a} and Zhongwei Chen^{*b}

- a. Department of Chemical and Biological Engineering. University of Ottawa.
 161 Louis Pasteur Private, Ottawa, Ontario K1N 6N5, Canada. Email: Jason.zhang@uottawa.ca
- b. Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada. E-mail: zhwchen@uwaterloo.ca,

Table of Contents

Calibration of SCE electrode	3
Calibration of conductivity-salinity	4
Supporting XRD information	5
Supplemental SEM information	6
Supplemental XPS wide survey	7
Supplemental Ti 2p scan information	8
Schematic of a flow-by CDI process	9
Supplemental Tables	10

Calibration of SCE electrode

The SCE electrode was calibrated in NaCl solution using SCE to Reversible Hydrogen Electrode (RHE) in an open circuit as shown in **Fig. S2**. The result was adding +0.5V to the potential of SCE in NaCl solution, which means the -1V to 0V was -0.5V to 0.5V in actual.

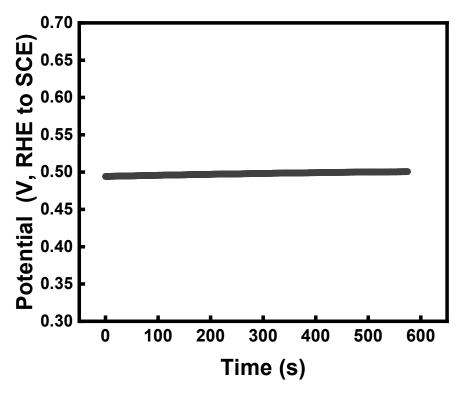


Fig. S1 Open circuit plot of SCE to RHE vs time.

Calibration of conductivity-salinity

The salinity of the water is based on a series calibration with a series of standard NaCl solution.

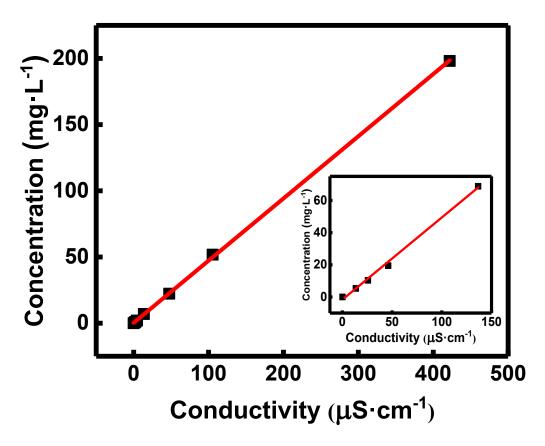


Fig. S2 calibration of the Conductivity to NaCl Concentration. The inserted graph is the enlarged part from 0-300 μ S/cm².

The calibrated **Equation 1** of Conductivity-Concentration is:

 $C = 2.33873 * Conductivity(\mu S) + 3.60607\#(1)$

Where the $R^2=0.99993$, indicating that the salinity of the solution can be considered as a linear dependent to the conductivity.

Supporting XRD information

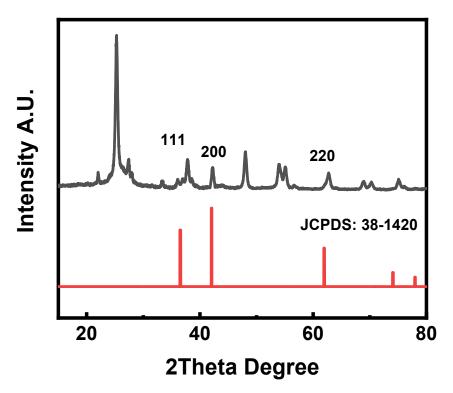


Fig. S3 XRD Patterns of NG-TiO $_xN_y$ and JCPDS card of TiN

Supplemental SEM information

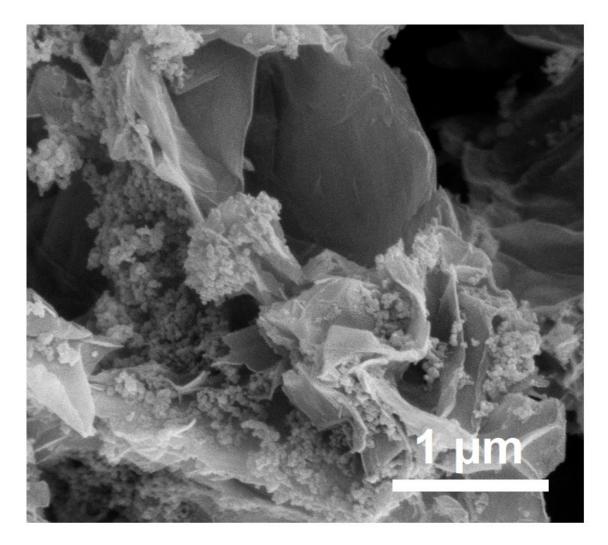


Fig. S4 Low magnification SEM image of the NG-TiO $_xN_y$.

Supplemental XPS wide survey

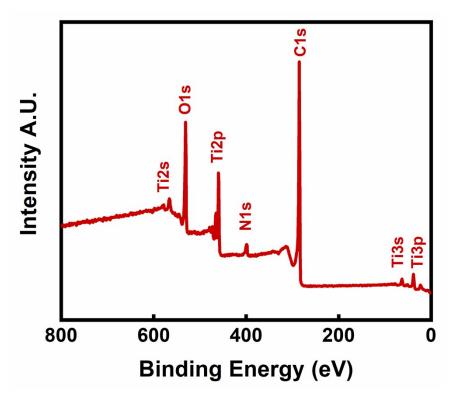


Fig. S5 XPS survey of the NG-TiO_xN_y.

Supplemental Ti 2p scan information

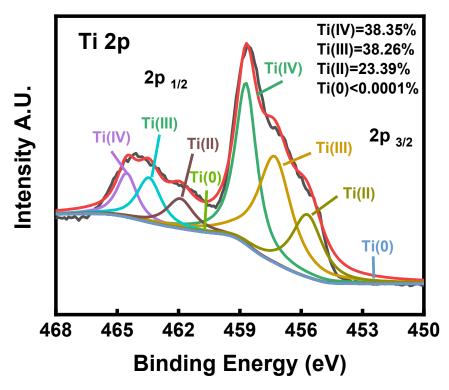


Fig. S6 Ti 2p XPS analysis of various Ti states.

Schematic of a flow-by CDI process

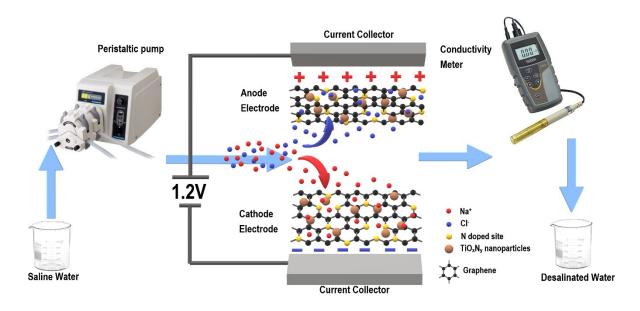


Fig. S7 Schematic of a flow-by CDI process

Supplemental Tables

Table S1 Lattice constants and N/Ti ratio of NG-TiO _x N _y .						
	20/º	d ₍₂₂₀₎ / Å	a/ Å	у		
NG-TiO _x N _y	62.371	1.490	4.2211	0.6122		

In this study, we conducted the nitridation process by the ammonia treatment of solid rGO-TiO₂ rather than the gaseous titanium precursor such as titanium tetrachloride. Thus, the nitridation is insufficient and the degree of nitridation is relatively low. Here, we made an attempt to calculate N/Ti ratio (y) using the reported method and XRD data listed in **Table S1**.¹

The d₂₂₀ is determined according to Bragg's law: $d_{220} = \frac{n\lambda}{2sin\theta}$

TiN lattice parameter is then calculated:

$$a_{TiN_{y}} = d_{220}\sqrt{h^2 + k^2 + l^2}$$

From the obtained values of lattice parameters, the N/Ti ratio of TiO_xN_y in NG-TiO_xN_y is calculated:

 $a_{TiN_y} = 4.1925 + 0.0467y$

Thus, the value of y is roughly 0.61 in the NG-TiO_xN_y nanocomposite. However, there is no fixed stoichiometry between nitrogen and titanium in titanium nitride. The N/Ti ratio varies from 0.6 to 1.2 and depends on the degree of nitridation.² In our design, the mass ratio of GO to TiO₂, the mass of rGO-TiO₂ charged in the ceramic boat, the porosity and morphology of rGO-TiO₂ as well as other experimental factors may affect the degree of nitridation. Thus, the value of *y* varies from sample to sample and from batch to batch.

Table S2 Oxidization states and atom percentage of Ti species in NG-TiO_xN_y.

i	Ti (IV)	Ti (III)	Ti (II)	Ti (0)
O _{Ti(i)}	+4	+3	+2	0
P _{Ti(i)} /%	38.35	38.26	23.39	~0

According to Fig. R1, four different oxidation states were observed for Ti in NG-TiO_xN_y, namely Ti(IV), Ti(III), Ti(II) and Ti(0).^{3, 4} The average oxidation state of titanium is calculated via the following equation:

$$Ti_{average} = \sum (O_{Ti(i)} \times P_{Ti(i)})$$

Where the $O_{Ti(i)}$ and $P_{Ti(i)}$ are the oxidation state and corresponding atom percentage of each Ti species. The values are listed in the above **Table S2**.

Thus, the calculated average oxidation state of Ti is +3.1497.

It is assumed that the oxidation states of all the nitrogen (O_N) and oxygen (O_O) that were bonded with Ti in the NG-TiO_xN_y composite are -3 and -2, respectively. Then, with the N/Ti ratio (y) calculated as 0.6122, the value of *x* can be calculated as follows:

$$x = -\frac{Ti_{average} + y * O_N}{O_O}$$

Then, we obtained the value of x as 0.6565, roughly 0.66.

References

- 1. V. Valvoda, R. Černý, R. Kužel, J. Musil and V. Poulek, *Thin Solid Films*, 1988, **158**, 225-232.
- 2. L. Toth, *Transition metal carbides and nitrides*, Elsevier, 2014.
- 3. M. C. Biesinger, B. P. Payne, B. R. Hart, A. P. Grosvenor, N. S. McIntryre, L. W. Lau and R. S. Smart, 2008.
- 4. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson and R. S. C. Smart, *Applied Surface Science*, 2011, **257**, 2717-2730.