Electronic Supplementary Information (ESI)

Influence of coordinating groups of organotin compounds on

the Fries rearrangement of diphenyl carbonate

Tao Liu, $^{abc^{\dagger}}$ Xiaoxue Yuan, $^{c^{\dagger}}$ Gang Zhang, ab Yi Zeng, a Tong Chen** and Gongying Wang*

^aChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China. E-mail: chentongw@cioc.ac.cn

^bNational Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China.

^cSichuan Center for Disease Control and Prevention, Chengdu 610041, Sichuan, P. R. China.

+ These authors contributed equally to this work.

Entry Reactant Catalyst base Solvent Dc ya	Reference
P3 XA	
1 Salicylic acid, phenol Zeolite (H- β) 70 -	S1
2 Phenol, CO ₂ ZnBr ₂ K ₂ CO ₃ CCl ₄ 23 -	S2
3 Salicylic acid, benzonitrile Thionyl 74 - chloride	S3
4 2-nitrobenzaldehyde, phenol Cu NPs K ₃ PO ₄ Toluene - 84	S4
2-phenoxybenzenediazonium 5 tetrafluoroborate, CO Pd(PPh ₃) ₄ K ₂ CO ₃ Toluene - 72	S5
6 2-aryloxybenzaldehydes RhCl ₃ (PPh ₄) - PhCl - 93	S6
7 DPC Bu ₂ SnO 62 42	This work

Table S1 Comparison of this synthetic method of PS and XA with those reported in the literatures.

Fig. S1 ¹H (a) and ¹³C NMR (b) spectra of PS.

Fig. S2 ¹H (a) and ¹³C NMR (b) spectra of XA.

Fig. S3 The total ion current chromatogram of PS (retention time, 13.11 min) and XA (retention time, 14.39 min).

Fig. S4 FT-IR spectra of the fresh Bu₂SnO and the spent Bu₂SnO after twelve times.

Reference

- S1 G. Kuriakose and N. Nagaraju, J. Mol. Catal. A: Chem., 2004, 223, 155–159.
- S2 J. W. Da, R. Z. Zhang, L. Z. Li and C. W. Bao, CN 105294444 A, 2014-06-06.
- S3 D. H. Chu, CN 106380399 A, 2016-09-18.
- S4 C. A. Menendez, F. Nador, G. Radivoy and D. C. Gerbino, Org. Lett., 2014, 16, 2846–2849.
- S5 Y. M. Xu, J. Zhou, C. C. Zhang, K. Chen, T. Zhang and Z. T. Du, *Tetrahedron Lett.*, 2014, 55, 6432–6434.
- S6 P. Wang, H. H. Rao, R. M. Hua and C. J. Li, Org. Lett., 2012, 14, 902–905.