Supplementary material

A Facile and Concise Route to Hydroxy Benzoyl Pyrido [2,3-d] Pyrimidine Heterocycles Derivatives: Synthesis, Structural, Spectral and Computational Exploration

Abida Ashraf^{1,5}, Muhammad Khalid,^{2*} Muhammad Nawaz Tahir³ Muhammad Yaqub¹, Muhammad Moazzam Naseer⁴, Ghulam Mustafa Kamal,² Bullo Saifullah^{2,7} Ataualpa Albert Carmo Braga⁶, Zahid Shafiq^{1*},Waqar Rauf⁸

¹ Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.

²Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan-64200, Pakistan

³Department of Physics, University of Sargodha, Sargodha, Pakistan

⁶Department of Chemistry Quaid-i-Azam University Islamabad, 45320, Pakistan

⁵Department of Chemistry, Kutchery Campus, The Women University Multan, Multan 60000, Pakistan.

⁶Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo,

Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil

⁷Institute of Advanced Research Studies in Chemical Sciences, University of Sindh, Hosho

Road Jamshoro Sindh 76080 Pakistan

⁸National Institute of Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577,

Faisalabad, Pakistan

Corresponding author^{2*} E-mail address: <u>muhammad.khalid@kfueit.edu.pk</u>; <u>Khalid@iq.usp.br</u> Corresponding author^{1*} E-mail address: <u>zahidshafiq25@hotmail.com</u>

Scheme S1: Plausible mechanism for the synthesis of pyrido[2,3-d]pyrimidines **6a**.

Table S1 . Comparison of XRD and DFT values of selected bond lengths and bond angles of 4a

Bond lengths				Bond angles			
	EXP	DFT		EXP	DFT		
01- C1	1.352 (2)	1.34	O1-C1-C2	117.46(15)	117.8		
O2-C8	1.235(2)	1.239	O1-C1-C6	123.57(15)	122.9		
O3- C14	1.222(2)	1.214	O2-C8-C6	120.79(15)	121.1		
O4-C15	1.209 (2)	1.213	O2-C8-C9	121.91(14)	117.3		
N1-C12	1.336(2)	1.336	O3-C14-N2	121.87(15)	121.7		
N1-C13	1.334(2)	1.332	O3-C14-C11	124.43(15)	125.4		
N2-C14	1.372 (2)	1.391	O4-C15-N2	121.25(16)	121.2		
N2-C15	1.383(2)	1.393	O4-C15-N3	122.82(16)	123.6		
N3-C12	1.385(2)	1.387	C12-N1-C13	117.29(14)	118		
N3-C15	1.386(2)	1.395	N1-C12-N3	117.37(14)	116.9		
N3-C16	1.464(2)	1.47	N1-C12-C11	123.07(15)	122.5		
C1-C2	1.384(2)	1.402	N1-C13-C9	124.05(15)	124.3		
C1-C6	1.415(2)	1.421	C14-N2-C15	127.54(14)	128.7		

C2-C3	1.373(3)	1.382	N2-C14-C11	113.66(14)	113
C3-C4	1.395(3)	1.409	N2-C15-N3	115.93(14)	115.2
C4-C5	1.384(2)	1.385	C12-N3-C15	121.99(14)	122.2
C4-C7	1.504(3)	1.51	C12-N3-C16	120.49(14)	119.6
C5-C6	1.402(2)	1.414	N3-C12-C11	119.57(14)	120.6
C6-C8	1.461(2)	1.469	C15-N3-C16	117.50(14)	118.2
C8-C9	1.491(2)	1.496	C2-C1-C6	118.97(16)	119.3
C9-C10	1.382(2)	1.396	C1-C2-C3	120.63(16)	120.4
C9-C13	1.399(2)	1.402	C1-C6-C5	118.71(15)	118.4
C10-C11	1.381(2)	1.387	C1-C6-C8	119.76(14)	118.9
C11-C12	1.403(2)	1.411	C2-C3-C4	122.15(16)	121.9
C11-C14	1.460(2)	1.473	C3-C4-C5	117.2 4(16)	117.5

 Table S1
 Comparison of XRD and DFT values of selected bond angles of 4a

Bond angles							
	EXP	DFT					
C3-C4-C7	121.45(17)	120.7					
C5-C4-C7	121.28(17)	121.9					
C4-C5-C6	122.20(16)	122.5					
C5-C6-C8	121.40(14)	122.7					
C6-C8-C9	121.91(14)	121.6					
C8-C9-C10	117.72(14)	119.2					
C8-C9-C13	124.85(15)	123.5					
C10-C9-C13	117.40(14)	117					
C9-C10-C11	119.83(15)	119.6					
C10-C11-C12	118.11(14)	118.4					
C10-C11-C14	121.21(14)	121.3					
C12-C11-C14	120.62(14)	120.3					

EXP=experiment, DFT=density functional theory

10						
Bond lengths			Bond angles			
	EXP	DFT		EXP	DFT	
F1-C4	1.3613(17)	1.356	F1-C4-C3	118.16(13)	118.8	
O1-C1	1.3508(18)	1.34	F1-C4-C5	118.84(13)	119.3	
O2-C7	1.2420(16)	1.239	O2-C1-C2	117.6	117.4	
O3-C15	1.2120(17)	1.215	O2-C1-C6	122.1	122.9	
O4-C14	1.2217(17)	1.212	O2-C7-C6	120.79(12)	120.7	
N1-C11	1.3361(18)	1.339	O2-C7-C8	116.68(13)	117.5	
N1-C12	1.3241(19)	1.327	O3-C15-N3	121.22(12)	121.8	
N2-C11	1.3844(17)	1.386	O3-C15-C10	124.86(13)	125.2	
N2-C13	1.4670(18)	1.471	O4-C14-N2	122.28(13)	123.6	
N2-C14	1.3677(19)	1.396	O4-C14-N3	120.85(13)	121.2	
N3-C14	1.3754(18)	1.393	C11-N1-C12	116.98(12)	117.9	

Table S2. Comparison of XRD and DFT values of selected bond lengths and bond angles of**4b**

N3-C15	1.3776(18)	1.39	N1-C11-N2	116.70(11)	116.8
C1-C2	1.393(2)	1.403	N1-C11-C10	122.92(12)	122.5
C1-C6	1.4145(19)	1.423	N1-C12-C8	125.11(13)	124.5
C2-C3	1.365(2)	1.383	C11-N2-C13	120.38(12)	119.7
C3-C4	1.384(2)	1.394	C11-N2-C14	121.87(11)	122.1
C4-C5	1.360(2)	1.374	N2-C11-C10	120.38(12)	120.7
C5-C6	1.4091(19)	1.413	C13-N2-C14	117.75(12)	118.2
C6-C7	1.463(2)	1.472	N2-C14-N3	116.86(12)	115.2
C7-C8	1.4951(19)	1.493	C14-N3-C15	127.17(12)	128.6
C8-C9	1.3873(19)	1.393	N3-C15-C10	113.92(11)	113
C8-C12	1.3981(9)	1.406	C2-C1-C6	120.26(14)	119.7
C9-C10	1.3871(19)	1.39	C1-C2-C3	120.48(14)	120.7
C10-C11	1.4005(17)	1.409	C1-C6-C5	118.28(13)	118.6
C10-C15	1.4682(19)	1.472	C1-C6-C7	119.29(12)	119
ETTE :	D D D D D 1		.4		

Table S2 . Comparison of XRD and DFT values of selected bond angles of 4b

Bond angles							
	EXP	DFT					
C2-C3-C4	118.88(14)	119.2					
C3-C4-C5	123.00(14)	121.9					
C4-C5-C6	119.02(13)	119.9					
C5-C6-C7	122.42(12)	122.4					
C6-C7-C8	122.53(12)	121.7					
C7-C8-C9	125.98(12)	124.6					
C7-C8-C12	116.77(12)	118.1					
C9-C8-C12	117.11(13)	117.1					
C8-C9-C10	119.04(12)	119.5					
C9-C10-C11	118.8(12)	118.6					
C9-C10-C15	121.49(12)	121					

EXP=experiment, DFT=density functional theory

Table S3 . Comparison of XRD and DFT values of selected bond lengths and bond angles of 4c

Bond lengths			Bond angles			
	EXP	DFT		EXP	DFT	
01-C1	1.349(2)	1.349	O1-C1-C2	117.86(14)	117.9	
O2-C9	1.2281(18)	1.228	O1-C1-C6	122.83(14)	122.8	
O3-C15	1.2205(17)	1.22	O2-C9-C6	120.78(13)	120.8	
O4-C16	1.2098(18)	1.21	O2-C9-C10	118.84(12)	118.8	
N1-C11	1.3327(19)	1.333	O3-C15-N3	121.7	122	
N1-C12	1.3368(17)	1.337	O3-C15-C13	124.13(13)	124.1	
N2-C15	1.3710(19)	1.371	O4-C16-N2	121.05(13)	121	
N2-C16	1.3800(19)	1.38	O4-C16-N3	122.76(14)	122.8	
N3-C12	1.3826(18)	1.383	C11-N1-C12	117.24(12)	117.2	

N3-C16	1.3803(18)	1.38	N1-C11-C10	124.69(12)	124.7
N3-C17	1.4680(18)	1.468	N1-C12-N3	116.82(12)	116.8
C1-C2	1.394(2)	1.394	N1-C12-C13	122.69(13)	122.7
C1-C6	1.408(2)	1.408	C15-N2-C16	127.74(12)	127.7
C2-C3	1.369(3)	1.369	N2-C15-C13	113.84(12)	113.8
C3-C4	1.393(2)	1.393	N2-C16-N3	116.20(13)	116.2
C4-C5	1.385(2)	1.385	C12-N3-C16	121.68(12)	121.7
C4-C7	1.502(2)	1.502	C12-N3-C17	120.79(11)	120.8
C5-C6	1.397(2)	1.397	N3-C12-C13	120.49(12)	120.5
C6-C9	1.4795(19)	1.479	C16-N3-C17	117.51(12)	117.5
C7-C8	1.507(2)	1.508	C2-C1-C6	119.29(15)	119.3
C9-C10	1.491(2)	1.49	C1-C2-C3	120.23(15)	120.2
C10-C11	1.394(2)	1.394	C1-C6-C5	118.40(13)	118.4
C10-C14	1.3903(18)	1.39	C1-C6-C9	118.98(13)	119
C12-C13	1.3999(19)	1.4	C2-C3-C4	122.24(14)	122.2
C13-C14	1.3821(19)	1.382	C3-C4-C5	117.13(14)	117.1
C13-C15	1.4638(18)	1.464	C3-C4-C7	121.93(14)	121.9

Table S3.	Comparison	of XRD	and DFT	values	of selected	bond	angles	of 4	c
-----------	------------	--------	---------	--------	-------------	------	--------	------	---

Bond angles						
	EXP	DFT				
C5-C6-C9	122.62(13)	122.6				
C6-C9-C10	120.37(12)	120.4				
C9-C10-C11	124.37(12)	124.4				
C9-C10-C14	118.55(13)	118.5				
C11-C10-C14	116.86(13)	116.9				
C10-C14-C13	119.54(13)	119.5				
C12-C13-C14	118.63(12)	118.6				
C12-C13-C15	119.82(13)	119.8				
C14-C13-C15	121.53(12)	121.5				
C5-C6-C9	122.62(13)	122.6				
C6-C9-C10	120.37(12)	120.4				
C9-C10-C11	124.37(12)	124.4				

EXP=experiment, DFT=density functional theory

 Table S4. Comparison of XRD and DFT values of selected bond lengths and bond angles of

 4d

	Bond lengths	8		Bond angles	
	EXP	DFT		EXP	DFT
O1-C2	1.352(2)	1.341	O1-C2-C1	122.48(16)	123
O2-C10	1.232 (2)	1.24	O1-C2-C3	118.26(16)	117.8
O3-C16	1.210(2)	1.215	O2-C10-C1	121.55(16)	121.2
O4-C17	1.205(2)	1.213	O2-C10-C11	117.13(16)	117.2
N1-C14	1.332(2)	1.339	O3-C16-N2	121.78(17)	121.7
N1-C15	1.323(2)	1.328	O3-C16-C13	124.24(17)	125.3

N2-C16	1.368(2)	1.39	O4-C17-N2	121.46(18)	121.1
N2-C17	1.377(2)	1.394	O4-C17-N3	122.69(18)	123.7
N3-C14	1.384(2)	1.387	C14-N1-C15	116.70(15)	117.9
N3-C17	1.377(2)	1.395	N1-C14-N3	116.66(15)	116.8
N3-C18	1.462(2)	1.471	N1-C14-C13	123.26(16)	122.5
C1-C2	1.412(2)	1.421	N1-C15-C11	125.03(16)	124.5
C1-C6	1.399(2)	1.414	C16-N2-C17	127.81(16)	128.6
C1-C10	1.458(2)	1.468	N2-C16-C13	113.97(15)	113
C2-C3	1.378(3)	1.401	N2-C17-N3	115.83(15)	115.2
C3-C4	1.375(3)	1.382	C14-N3-C17	122.24(15)	122.1
C4-C5	1.397(3)	1.409	C14-N3-C18	120.25(16)	119.7
C5-C6	1.374(2)	1.385	N3-C14-C13	120.08(16)	120.7
C5-C7	1.517(2)	1.522	C17-N3-C18	117.44(16)	118.2
C7-C8	1.505(3)	1.54	C2-C1-C6	118.09(16)	118.3
C7-C9	1.502(3)	1.54	C2-C1-C10	119.45(16)	118.9
C10-C11	1.491(2)	1.496	C1-C2-C3	119.25(17)	119.2
C11-C12	1.376(2)	1.393	C6-C1-C10	122.49(15)	122.8
C11-C15	1.393(2)	1.406	C1-C6-C5	122.98(16)	122.7
C12-C13	1.380(2)	1.391	C1-C10-C11	121.329(15)	121.7
C13-C14	1.392(2)	1.409	C2-C3-C4	120.71(18)	120.5
C13-C16	1.463(2)	1.471	C3-C4-C5	121.71(18)	121.9

Table S4 . Comparison of XRD and DFT values of selected bond angles o	f 4d
---	------

Bond angles					
	EXP	DFT			
C4-C5-C6	117.07(18)	117.3			
C4-C5-C7	123.37(17)	121.6			
C6-C5-C7	119.55(17)	121.1			
C5-C7-C8	110.62(17)	112			
C5-C7-C9	114.50(19)	111.9			
C8-C7-C9	110.85(19)	111.1			
C10-C11-C12	124.81(15)	124.5			
C10-C11-C15	118.00(15)	118.3			
C12-C11-C15	116.99(15)	117			
C11-C12-C13	119.63(16)	119.5			
C12-C13-C14	118.37(16)	118.6			
C12-C13-C16	121.57(15)	121.1			
C14-C13-C16	120.06(15)	120.4			

EXP=experiment, DFT=density functional theory

Table S5: Experimental and DFT based vibrational frequencies of 6a

Experimental DFT Intensity	Vibrational assignments
----------------------------	-------------------------

Frequency	Frequency		
3217	3594	99.97	<i>ν</i> (N-H)
3092	3382	360.15	v(O-H)
	3205	3.68	$v_{(\text{C-H}_{Py})}$
	3197	4.26	$v_{\rm s}({ m C-H}_{ m Ben})$
	3170	11.73	$v(C-H_{Py})$
	3130	10.76	$v_{\rm as}$ (C-H _{CH3})
	3102	14.08	$v_{as} + v(C-H_{CH3})$
	3067	21.87	$v_{\rm s}({ m C-H_{CH3}})$
1717	3023	34.24	$v_{\rm s}({ m C-H_{CH3}})$
1/1/	1778	566.91	v(C=O)
169/	1770	796.06	v(C=O)
1625	1671	216.91	v(C=O)
	1629	421.93	v(C=O)
1570	1615	214.40	$\rho(C-H_{Ben}) + \rho(O-H)$
1370	1595	78.49	$\rho(C-H_{Pv}) + \nu(C=C-C=N_{Pv})$
1474	1544	307.26	ρ(N-H)
	1516	199.69	$\delta(\text{C-H}_{\text{CH3}}) + \rho(\text{O-H})$
	1494	12.26	$\delta(C-H_{CH3})$
	1438	10.39	$\delta_{\rm s}({\rm C-H_{CH3}})$
	1409	112.62	$\rho(C-H_{CH3}) + \rho(O-H)$
1373	1383	133 14	$\delta_{s}(C-H_{CH3}) + \rho(N-H)$
1329	1357	303.48	$\rho(C-H_{Py}) + \rho(O-H)$
1248	1282	108 63	$o(C-H_{\rm p})$
1270	1202	142.38	$p(C-H_{py})$
	12/0	266 10	$p(C-H_{py}) + p(C-H_{CH3})$
1184	1227	200.10	$\rho(C^{-11}\text{Ben}) + \rho(C^{-11})$ $\rho(C^{-}\text{H}_{\text{Pen}})$

	1179	50.46	$\rho(C-H_{CH3}) + \rho(N-H)$
	1166	16.40	ρ + δ (C-H _{Ben})
	1138	4.88	$\rho(C-H_{Py})$
	1086	22.14	$\rho(C-H_{CH3}) + \rho(C-H_{Py})$
	1066	2.42	ρ(C-H _{CH3})
	1032	2.05	$\rho(C-H_{CH3})$
	1003	30.67	$\rho(C-H_{CH3})$
943	992	9.56	$\delta_{as}(C-H_{Py})$
	966	17.82	$\rho(C-H_{CH3}) + \rho(N-H)$
	925	4.84	$\rho(C-H_{CH3})+ v(C=C-C=C_{Ben})$
	851	8.07	$\delta_{s}(C-H_{Ben})$
807	825	82.06	ρ(O-H)
	800	19.00	$\rho(\text{C-H}_{\text{Ben}}) + \rho(\text{C-H}_{\text{CH3}})$
	791	29.86	р(О-Н)
725	753	25.32	ρ(C=O)
	707	15.56	$\delta_{as}(C-H_{Ben}) + \delta_s(N-H)$
677	690	33.38	$v(C=C-C=C_{Ben})$
	661	54.60	δ _s (N-H)
	603	1.84	$\delta_{s}(C-H_{Py})$
	546	12.49	$\delta_{\rm s}({\rm C-H_{Ben}}) + \delta_{\rm as}({\rm C-H_{CH3}})$
	515	49.64	$\rho(\text{O-H}) + \upsilon(\text{C=C-C=N}_{Py})$
	486	21.30	$\rho(C-H_{CH3}) + \rho(O-H)$
	402	22.45	$\rho(C-O) + \rho(C-H_{CH3})$
	366	6.52	$\rho(C-H_{CH3}) + \rho(O-H)$
	337	6.77	$\delta_{as}(C-H_{Ben}) + \rho(C-H_{CH3})$
	319	3.12	$\rho(C-H_{CH3})$
	293	3.69	$\rho(C-H_{CH3}) + \rho(C-H_{Py})$
	225	3.67	$\rho(C-H_{CH3})$
	171	1.78	$\rho(C-H_{CH3})$
	156	3.91	$\rho(C-H_{CH3})$
	111	0.6	$\rho(C-H_{CH3})$
	72	0.26	$\rho(C-H_{CH3})$
	27	0.13	$\delta_{\rm s}({ m C-H_{CH3}})$

δ Scissoring, v_s symmetric, v_{as} asymmetric, ρ rocking, $δ_s$ symmetric bending vibration (wagging), $δ_{as}$ asymmetric bending vibration(twisting), v is stretching vibration, in compound. (Ben) is benzene. Intensity in (km/mol) and Frequency in v(cm⁻¹).

Experimental	DFT	Intonsity	Vibrational assignments
Frequency	Frequency	Intensity	v ibi ational assignments
3119-3026	3592	96.83	<i>v</i> (N-H)
3163	3395	333.11	<i>v</i> (O-H)
	3207	0.82	$v(C-H_{Ben})$
	3194	1.59	$v_{\rm s}(\text{C-H}_{\rm Ben})$
	3179	2.01	$v(C-H_{Pv})$
	3133	9.92	· · J/

Table S6: Experimental and DFT based vibrational frequencies of 6b

			$v_{\rm as}$ (C-H _{CH3})
2837	3069	22.52	$v_{\rm s}$ (C-H _{CH3})
1721	1780	633.13	v(C=O)
1675-1589	1768	702.70	$v(C=O) + \rho(N-H)$
	1672	91.51	$\rho(\text{H-O}) + \upsilon(\text{C=C-C=C}_{\text{Ben}})$
	1635	602.59	$\rho(C-H_{Py}) + v(C=C-C=N_{Py})$
	1615	118.24	$\rho(C-H_{Ben}) + \rho(O-H)$
	1595	70.83	$\rho(C-H_{Py})+ \upsilon(C=C-C=N_{Py})$
	1523	265.78	ρ(C-H _{CH3})
	1510	335.44	$\rho(\text{C-H}_{\text{Ben}}) + \rho(\text{O-H})$
1465	1495	13.17	ρ(C-H _{CH3})
	1468	68.11	$\delta_{s}(C-H_{CH3})$
	1404	114.37	$\rho(\text{C-H}_{\text{Ben}}) + \rho(\text{O-H})$
1326	1379	126.24	$\delta_{s}(C-H_{CH3}) + \rho(C-H_{Py})$
	1346	290.29	$\rho(C-H_{Py}) + \rho(O-H)$
	1284	48.64	$\rho(C-H_{Py})$
1280	1274	277.61	$\rho(\text{C-H}_{\text{Ben}}) + \rho(\text{C-H}_{\text{CH3}})$
1222	1241	405.43	$\rho(C-H_{Ben}) + \rho(O-H)$
	1211	36.72	$\rho + \delta(\text{C-H}_{\text{Ben}})$

1172	1178	43.62	$\rho(\text{C-H}_{\text{CH3}}) + \rho(\text{N-H})$
	1156	26.27	$\rho + \delta(C-H_{Ben})$
	1145	9.13	$\rho(C-H_{Pv}) + \delta(C-H_{Ben})$
1069	1086	22.78	$\rho(C-H_{CH3}) + \rho(C-H_{Py})$
	1007	25.66	$\rho(C-H_{Ben})$
988	998	19.25	$\delta_{as}(C-H_{Py})$
	968	20.66	$\rho(C-H_{CH3}) + \rho(N-H)$
0.60	941	10.02	$\rho(N-H) + v(C=C-C=C_{Ben})$
869	851	22.84	$\delta_{\rm s}({ m C-H}_{ m Ben})$
834	844	63.69	ρ(N-H)
7 07	816	69.12	ρ(O-H)
786	793	12.71	$\delta_{\rm s}({ m C-H}_{ m Py})$
/36	752	29.94	$\delta_{s}(C=O)$
	714	8.99	$\rho(C-H_{Py}) + \rho(N-H)$
(00	691	34.52	$v(C=C-C=C_{Ben})$
680	663	52.32	$\delta_{\rm s}({ m N-H})$
	610	15.02	$\delta_{\rm s}({ m C-H}_{ m Py})$
	551	5.27	$\delta_{\rm s}({\rm C-H_{Ben}})$
	518	34.44	$\rho(\text{O-H}) + \rho(\text{C-H}_{\text{Ben}})$
	478	8.34	$\rho(C-H_{CH3}) + \rho(O-H)$
	408	20.46	ρ (C=O) + ρ (C-H _{CH3})
	385	1.51	$\rho(\text{C-H}_{\text{CH3}}) + \rho(\text{O-H})$
	324	7.42	$\rho(C-H_{CH3})$
	312	3.69	$\rho(C-H_{CH3}) + \rho(C-H_{Ben})$
	229	4.55	$\delta_{as}(C-H_{CH3}) + \delta_{as}(C-H_{Py})$
	209	1.92	$\rho(C-H_{CH3}) + \rho(O-H)$
	171	2.61	$\rho(C-H_{CH3}) + \rho(C=O)$
	149	5.02	ρ(C-H _{CH3})
	111	0.51	$\rho(C-H_{CH3})$
	75	0.69	ρ(C-H _{CH3})
	27	0.52	$\delta_{s}(C-H_{CH3})$

δ Scissoring, v_s symmetric, v_{as} asymmetric, ρ rocking, δ_s symmetric bending vibration (wagging), δ_{as} asymmetric bending vibration(twisting), v is stretching vibration, in compound. (Ben) is benzene. Intensity in (km/mol) and Frequency in v(cm⁻¹).

Table S7: Experimental and DFT based vibrational frequencies of 6c

Experimental Frequency	DFT Frequency	Intensity	Vibrational assignments
3168	3594	100.28	<i>v</i> (N-H)
3131-3045	3385	365.09	<i>v</i> (O-H)
	3207	3.72	$v(C-H_{Py})$
	3196	4.53	$v_{\rm s}(\rm C-H_{\rm Ben})$
	3171	12.57	$v(C-H_{Pv})$
	3159	12.71	$v_{as}(C-H_{Ben})$
	3130	10.74	$v_{as}(C-H_{CH3})$
	3091	43.08	$v_{\rm s} + v_{\rm sc}(C-H_{\rm CH2})$
2936	3025	34.21	

1720	1779	565.30	$v_{\rm s}({\rm C-H_{CH3}})$
1721-1685	1770	796.26	v(C=O)
	1669	261.74	$v(C=O) + \rho(N-H)$
1628	1628	417.69	$\rho(O-H) + \nu(C=C-C=C_{Ben})$
	1614	186.69	$v(C=O) + v(C=C-C=N_{Py})$
	1596	78.16	$\rho(C-H_{Ben}) + \rho(O-H)$
			$\rho(C-H_{Pv}) + \upsilon(C=C-C=N_{Pv})$
	1523	190.75	δ(C-H _{CH3})
	1513	207.21	$\delta(\text{C-H}_{\text{CH3}}) + \rho(\text{C-H}_{\text{Ben}})$
1478	1497	10.37	$\delta(\text{C-H}_{\text{CH3}})$
	1424	26.51	$\delta_{s}(C-H_{CH3}) + \rho(N-H)$
	1407	127.73	$\rho(C-H_{Ben}) + \rho(O-H)$
1376	1384	124.67	$\delta_{\rm s}({\rm C-H_{CH3}}) + \rho({\rm N-H})$
1329	1332	352.21	$\rho(C-H_{Ben}) + \rho(C-H_{Py})$
	1287	212.65	$\rho(\text{C-H}_{\text{CH3}}) + \delta_{as}(\text{C-H}_{\text{CH2}})$
1252	1267	102.21	$\delta_{as}(C-H_{CH2}) + \delta_{as}(C-H_{CH3}) + \rho(O-H)$
	1240	265.88	$\rho(\text{C-H}_{\text{Ben}}) + \rho(\text{O-H})$
1205	1225	37.60	$\rho(\text{C-H}_{\text{Ben}}) + \delta_{\text{s}}(\text{C-H}_{\text{CH2}})$

	1180	51.63	$\rho(C-H_{CH3}) + \rho(N-H)$
	1166	18.80	$\rho + \delta(C-H_{Ben})$
	1139	5.31	$\rho(C-H_{Pv})$
1067	1087	13.70	$\delta_{as}(C-H_{CH3}) + \delta_{as}(C-H_{CH2}) + \rho(C-H_{Py})$
	1087	11.19	$\rho(C-H_{CH3}) + \delta_{as}(C-H_{CH2})$
	1075	6.59	$\delta_{as}(C-H_{CH3}) + \delta_{as}(C-H_{CH2})$
	1013	22.26	$\rho(C-H_{Ben})$
	996	9.40	$\delta_{as}(C-H_{Py})$
940	967	19.23	$\rho(C-H_{CH3})$
862	912	9.72	$\rho(C-H_{CH3})+\rho(N-H)$
	857	12.03	$\delta_{\rm s}({ m C-H}_{ m Ben})$
821	833	71.68	$\rho(\text{O-H}) + \upsilon(\text{C=C-C=C}_{\text{Ben}})$
	823	70.95	р(О-Н)
786	799	17.75	ρ(C-H _{CH3})
750	752	24.30	$v_{(C=O)}$
710	710	18.98	$\delta_{\rm s}({\rm C-H}_{\rm Ben}) + \delta_{\rm s}({\rm N-H})$
672	690	24.21	$v(C=C-C=C_{Ben}) + \delta_{as}(C-H_{CH3})$
	663	58.04	$\delta_{s}(N-H)$
	612	5.92	$\delta_{\rm s}({\rm C-H}_{\rm Ben}) + \delta_{\rm s}({\rm N-H})$
	563	7.91	$\delta_{\rm s}({\rm C-H_{Ben}}) + \delta_{\rm as}({\rm C-H_{Py}})$
	515	48.97	$\rho(\text{O-H}) + \upsilon(\text{C=C-C=N_{Pv}})$
	483	16.37	$\rho(C-H_{Ben}) + \rho(O-H)$
	404	23.46	ρ (C=O) + ρ (C-H _{CH3})
	367	5.79	$\rho(C-H_{CH3}) + \rho(O-H)$
	326	3.15	$\rho(C-H_{Pv}) + \rho(C-H_{CH3})$
	301	7.21	$\rho(C-H_{CH3})$
	246	0.37	ρ(C-H _{CH3})
	214	3.92	ρ(C-H _{CH3})
	166	2.41	$\rho(C-H_{CH3}) + \delta_{as}(C-H_{Py})$
	146	1.96	$\rho(C-H_{CH3})$
	109	0.53	$\rho(C-H_{CH3})$
	74	0.79	$\rho(C-H_{CH3})$
	25	0.14	$\rho(C-H_{CH3})$

δ Scissoring, v_s symmetric, v_{as} asymmetric, ρ rocking, $δ_s$ symmetric bending vibration (wagging), $δ_{as}$ asymmetric bending vibration(twisting), v is stretching vibration, in compound. (Ben) is benzene. Intensity in (km/mol) and Frequency in v(cm⁻¹).

Table S8:]	Experimental	and DFT	based	vibrational	frequencies	of 6d
-------------	--------------	---------	-------	-------------	-------------	-------

Experimental	DFT	Intensity	Vibrational assignments
Frequency	Frequency		
3051-2963	3594	93.38	$v_{(N-H)}$
3168-3051	3391	343.14	<i>v</i> (O-H)
2950	3204	1.20	$v(C-H_{Pv})$
	3196	5.31	$v_{\rm s}({ m C-H}_{ m Ben})$
	3183	5.98	$v_{(\text{C-H}_{\text{Ben}})}$
	3168	10.34	$v_{\rm as}$ (C-H _{Ben})
	3132	10.16	$v_{\rm as}(\text{C-H}_{\rm CH3})$
	3096	33.63	$v_{\rm s} + v_{\rm as}(\text{C-H}_{\text{CH3}})$

	3093	22.21	$v_{s} + v_{as}(C-H_{CH3})$
	3087	65.57	$v_{as}(C-H_{CH3})$
	3068	23.42	$v_{\rm s}({ m C-H_{CH3}})$
	3025	35.50	$v_{\rm s}({ m C-H_{CH3}})$
	3020	23.61	$v_{\rm s}({ m C-H_{CH3}})$
	3017	7.72	<i>v</i> (С-Н)
1717	1778	655.11	v(C=O)
1677	1765	691.36	$v(C=O) + \rho(N-H)$
	1667	225.78	$\rho(\text{O-H}) + \upsilon(\text{C=C-C=C}_{\text{Ben}}) +$
			$\delta(C-H_{Ben})$
1571	1646	117.34	$v(C=O) + v(C=C-C=N_{P_V})$
	1632	464.76	$v(C-O) + v(C=C-C=N_{Pv})$
	1613	163.26	$\rho(C-H_{Ben}) + \rho(O-H)$
	1596	76.87	$\rho(C-H_{Pv}) + v(C=C-C=N_{Pv})$
	1522	262.94	$\delta(C-H_{CH3})$
	1515	187.88	$\delta(C-H_{CH3}) + \rho(C-H_{Ben}) + \rho(O-$
			H)
	1507	33.06	δ(C-H _{CH3})
1474	1502	22.99	$\delta(C-H_{CH3})$
	1495	12.51	$\delta(C-H_{CH3})$
	1468	63.58	$\delta(C-H_{CH3})$
	1422	10.66	δ_{s} (C-H _{CH3})
1336	1408	172.16	$\rho(O-H) + \rho(C-H_{Ben})$
	1386	37.70	$\rho(N-H) + \rho(C-H)$
	1379	108.49	$\delta_{\rm s}(\rm C-H_{\rm CH3}) + \rho(\rm N-H)$
	1369	38.10	$\rho(C-H_{Pv}) + \rho(C-H)$
	1331	380.88	$\rho(C-H_{Por}) + \nu(C=C-C=C_{Por}) + \nu(C=C-C=C_{Por}$
			$O(C-H_{Py})$
	1315	78.81	$\mathcal{V}(C=C-C=N_{Pu})+O(C-H_{Pu})$
	1284	60.75	$O(C-H_{Py})$
1209	1280	294.05	$\rho(C-H_{Par}) + \delta(C-H_{Par})$
1200	1245	257 10	$0(C-H_{\text{Berr}}) + 0(O-H)$
	1232	97.28	$\rho(C-H_{\text{Der}})$
	1177	29 39	$\rho(N-H) + \rho(C-H_{CH2})$
1072	1169	21.90	$p(\mathbf{r},\mathbf{n}) \neq p(\mathbf{c},\mathbf{n})$
998	1087	20.48	$\rho(C-H_{\rm Ben}) + \rho(C-H_{\rm CM})$
550	999	20.40	$\delta (C-H_{\rm P}) + \delta (C-H_{\rm P})$
	968	10.24	$o(C-H_{out}) + o(N-H)$
	010	6 70	$\delta(C-H_{r})$
833	925 913	0.75 71 QE	$O_{\rm s}(C-H_{\rm em})$
000	000 000	21.00	$\mathcal{V}(C-C C-C) \perp \mathcal{O}(U U)$
700	000	55.05	$\sim (C - C - C_{Ben}) + \rho(N - \Pi)$
107	019 019	81.4U	$O_{\rm S}(O-\Pi)$
750	/88	32.59	$O_{\rm s}({\rm U-H})$
750	/66	21.//	$O_{s}(U-\Pi_{CH3})$
c 7 2	/52	30.46	
672	690	33.01	$\sigma(C=C-C=C_{Ben})+\delta_{as}(C-H_{CH3})$
	662	63.22	ð _s (N-H)

614	16.54	δ_{s} (N-H)+ δ_{s} (C-H _{py})
593	11.39	$\delta_{\rm s} \left({ m C-H}_{ m Ben} ight)$
521	35.09	$\delta_{\rm s} \left({ m N-H}_{\rm py} \right)$
499	7.04	ρ (O-H)+ ρ (C-H _{Ben})
451	22.62	ρ (O-H)+ δ_s (C-H _{Ben})
409	24.02	$\rho(C=O) + \rho(C-H_{CH3})$
399	2.53	$\rho(C-H_{CH3})+\rho(C=O)$
322	7.60	$\rho(C-H_{CH3})+\rho(C-H_{Py})$
289	0.80	$\rho(C-H_{CH3})$
211	4.25	$\rho(C-H_{CH3})+\rho(O-H)$
148	1.70	$\delta_{s}(C-H_{Ben})+\rho(C-H_{CH3})$
147	3.42	$\rho(C-H_{CH3})$
101	0.40	$\rho(C-H_{CH3})$
69	0.55	$\rho(C-H_{CH3})$
31	0.51	$\delta_{s}(C-H_{CH3})$

δ Scissoring, v_s symmetric, v_{as} asymmetric, ρ rocking, δ_s symmetric bending vibration (wagging), δ_{as} asymmetric bending vibration(twisting), v is stretching vibration, b is bending vibration, in compound. (Ben) is benzene. Intensity in (km/mol) and Frequency in v(cm⁻¹).

Donor(i)	Туре	Acceptor(j)	Туре	$\mathbf{F}(2)$ all \mathbf{I}/\mathbf{m} oll	E(j)-E(i) ^b	F(i,j)c
				$\mathbf{E}(2)^{*}[\mathbf{K}\mathbf{J}/\mathbf{H}\mathbf{O}\mathbf{I}]$	[a.u.]	[a.u.]
O_1 - H_2	σ	C_{10} - C_{11}	σ^{*}	6.07	1.44	0.084
$N_{6}-C_{28}$	π	C_{24} - C_{29}	π^*	43.15	0.41	0.119
$N_{6}-C_{28}$	π	C ₂₅ -C ₂₇	π^{*}	14.04	0.42	0.068
C_{10} - C_{18}	π	O ₃ -C ₂₃	π^{*}	31.62	0.33	0.096
C_{10} - C_{18}	π	C_{11} - C_{13}	π^{*}	18.62	0.36	0.076
C_{10} - C_{18}	π	C_{15} - C_{16}	π^{*}	30.00	0.37	0.096
C_{11} - C_{13}	π	C_{10} - C_{18}	π^{*}	32.30	0.34	0.098
C_{11} - C_{13}	π	C_{15} - C_{16}	π^{*}	21.28	0.37	0.081
$C_{15}-C_{16}$	π	C_{10} - C_{18}	π^{*}	20.41	0.34	0.077
$C_{15}-C_{16}$	π	C_{11} - C_{13}	π^{*}	29.57	0.37	0.093
C_{24} - C_{29}	π	O ₃ -C ₂₃	π^{*}	16.01	0.36	0.071
C_{24} - C_{29}	π	$N_{6}-C_{28}$	π^{*}	20.26	0.32	0.073
C_{24} - C_{29}	π	C ₂₅ -C ₂₇	π^*	37.06	0.36	0.105
$C_{25}-C_{27}$	π	$O_4 - C_{31}$	π^{*}	27.46	0.37	0.092
$C_{25}-C_{27}$	π	$N_{6}-C_{28}$	π^{*}	42.80	0.33	0.108
C_{29} - H_{30}	σ	$N_{6}-C_{28}$	σ^{*}	5.70	1.19	0.074
C_{13} - C_{15}	σ	C_{12} - C_{13}	σ^{*}	4.68	1.37	0.072
$LP-O_1$	σ	C_{10} - C_{18}	σ^{*}	9.12	1.24	0.095
$LP-O_1$	π	C_{10} - C_{18}	π^{*}	48.09	0.42	0.135
LP-O ₃	π	O_1 - H_2	σ^{*}	5.80	1.30	0.078
LP-O ₃	π	C_{13} - C_{15}	σ^{*}	5.53	1.30	0.076
LP-O ₃	π	O_1 - H_2	σ^{*}	21.88	0.92	0.129
LP-O ₃	π	C_{18} - C_{23}	σ^{*}	13.13	0.92	0.100
LP-O ₃	π	C_{23} - C_{24}	σ^{*}	21.12	0.88	0.123
LP-O ₄	π	$N_7 - C_{31}$	σ^{*}	34.49	0.81	0.151
LP-O ₄	π	$C_{27}-C_{31}$	σ^{*}	24.00	0.83	0.128
LP-O ₅	π	N ₇ -C ₃₂	σ^{*}	31.82	0.80	0.145
$LP-O_5$	π	N_9-C_{32}	σ^{*}	33.26	0.79	0.147
LP-N ₆	σ	N_9-C_{28}	σ^{*}	5.53	0.93	0.065

 Table S9: Natural bond orbital (NBO) analysis of 6a

LP-N ₆	σ	C_{24} - C_{29}	σ^{*}	11.39	1.03	0.098
LP-N ₆	σ	C_{27} - C_{28}	σ^{*}	12.21	1.01	0.100
LP-N ₇	σ	$O_4 - C_{31}$	π^*	65.27	0.38	0.143
LP-N ₇	σ	O ₅ -C ₃₂	π^{*}	68.70	0.36	0.141
LP-N ₉	σ	$O_5 - C_{32}$	π^{*}	70.39	0.36	0.142
LP-N ₉	σ	$N_{6}-C_{28}$	π^{*}	64.20	0.33	0.133
$N_{6}-C_{28}$	π	C_{24} - C_{29}	π^*	165.36	0.03	0.096
N ₆ -C ₂₈	π	C ₂₅ -C ₂₇	π^{*}	120.98	0.04	0.095
C_{10} - C_{18}	π	C_{11} - C_{13}	π^{*}	167.00	0.02	0.096
C ₁₀ -C ₁₈	π	C ₁₅ -C ₁₆	π^*	134.44	0.03	0.088

Table S10: Natural bond orbital (NBO) analysis of 6b

Donor(i)	Туре	Acceptor(j)	Туре	E (2)ª[kJ/mol]	E(j)-E(i) ^b [a.u.]	F(i,j)c [a.u.]
O ₅ - C ₃₃	σ	C ₂₄ - C ₃₃	σ^{*}	65.09	4.11	0.469
O ₅ - C ₃₃	σ	C ₂₈ - H ₃₀	σ^{*}	21.55	4.07	0.265
N ₇ - C ₂₆	π	C ₂₁ - C ₂₂	π^{*}	9.53	0.34	0.051
N ₇ - C ₂₆	π	C ₂₄ - C ₂₅	π^*	29.05	0.32	0.090
N ₉ - H ₁₀	σ	C ₂₄ - C ₃₃	σ^{*}	15.93	3.72	0.220
N ₉ - H ₁₀	σ	C ₂₈ - H ₃₀	σ^{*}	12.09	3.69	0.189
N ₉ - C ₃₂	σ	C ₂₈ - H ₃₀	σ^{*}	13.09	3.85	0.201
N9 - C33	σ	C ₂₈ - H ₃₀	σ^{*}	58.20	3.84	0.422
C ₁₁ - C ₁₉	π	O ₄ - C ₂₀	π^{*}	25.60	0.25	0.075
C ₁₁ - C ₁₉	π	C ₁₂ - C ₁₄	π^{*}	14.59	0.29	0.059
$C_{11} - C_{19}$	π	$C_{16} - C_{17}$	π^{*}	22.31	0.28	0.072
C ₁₂ - C ₁₄	π	$C_{11} - C_{19}$	π^{*}	22.39	0.28	0.073
C ₁₂ - C ₁₄	π	$C_{16} - C_{17}$	π^*	18.22	0.28	0.065
C ₁₆ - C ₁₇	π	C ₁₁ - C ₁₉	π *	14.86	0.29	0.061
C_{16} - C_{17}	π	C ₁₂ - C ₁₄	π^*	20.42	0.30	0.070
C ₂₁ - C ₂₂	π	O ₄ - C ₂₀	π^{*}	14.75	0.27	0.058
C_{21} - C_{22}	π	$N_7 - C_{26}$	π^*	30.31	0.27	0.081
C ₂₁ - C ₂₂	π	C ₂₄ - C ₂₅	π^*	15.19	0.28	0.059
C ₂₄ - C ₂₅	π	$O_5 - C_{33}$	π^*	24.56	0.29	0.078
C ₂₄ - C ₂₅	π	N ₇ - C ₂₆	π^*	12.58	0.28	0.054
C ₂₄ - C ₂₅	π	$C_{21} - C_{22}$	π^*	25.56	0.30	0.080
$LP-F_1$	π	C ₁₄ - C ₁₆	σ^{*}	6.06	0.96	0.068
$LP-F_1$	π	$C_{16} - C_{17}$	σ^*	5.88	0.99	0.068
$LP-F_1$	π	$C_{16} - C_{17}$	π^*	17.63	0.43	0.083
$LP-O_2$	π	$C_{11} - C_{19}$	π^*	37.71	0.32	0.105
$LP-O_4$	π	$C_{19} - C_{20}$	σ^{*}	11.23	0.78	0.085
LP-O ₄	π	$C_{20} - C_{21}$	σ^*	18.11	0.71	0.103
LP-O ₅	σ	$C_{24} - C_{33}$	σ^*	40.60	3.72	0.351
LP-O ₅	σ	$C_{28} - H_{30}$	σ^*	15.52	3.69	0.214
LP-O ₅	π	$N_9 - C_{33}$	σ^*	33.40	0.67	0.136
LP-O ₅	π	$C_{24} - C_{33}$	σ^*	16.66	3.31	0.214
LP-O ₅	π	$C_{28} - H_{30}$	σ^*	26.19	3.28	0.271
LP-O ₆	π	$N_8 - C_{32}$	σ^*	26.30	0.65	0.119
LP-O ₆	π	$N_9 - C_{32}$	σ^*	25.66	0.66	0.119
LP-N ₇	σ	$C_{21} - C_{26}$	σ^*	11.48	0.89	0.092
LP-N ₇	σ	$C_{24} - C_{25}$	σ^*	9.61	0.86	0.082
LP-N ₇	σ	$C_{24} - C_{33}$	σ	6.82	3.39	0.137
LP-N ₇	σ	$C_{28} - H_{30}$	σ	11.10	3.35	0.176

LP-N ₈	σ	C ₂₄ - C ₂₅	π^{*}	47.19	0.28	0.103	
LP-N ₉	σ	O ₅ - C ₃₃	π^{*}	51.05	0.28	0.109	
O ₄ - C ₂₀	π^{*}	C ₁₁ - C ₁₉	π^{*}	113.58	0.02	0.071	
N ₇ - C ₂₆	π^{*}	C ₂₁ - C ₂₂	π^{*}	135.27	0.02	0.084	
C ₁₁ - C ₁₉	π^{*}	C ₁₂ - C ₁₄	π^{*}	260.90	0.01	0.083	
C ₂₄ - C ₂₅	π^{*}	C ₂₁ - C ₂₂	π^{*}	249.85	0.01	0.086	

Table S11: Natural bond orbital (NBO) analysis of 6c

Donor(i)	Туре	Acceptor(j)	Туре	F (2)ally I/moll	E(j)-E(i) ^b	F(i,j)c
				$\mathbf{E}(2)^{*}[\mathbf{K}\mathbf{J}/\mathbf{H}\mathbf{U}]$	[a.u.]	[a.u.]
N_6-C_{30}	π	C_{27} - C_{28}	π^{*}	30.14	0.33	0.090
$N_{6}-C_{30}$	π	C_{31} - C_{32}	π^*	9.83	0.34	0.051
N_9-C_{36}	σ	$C_{15}-C_{16}$	π^*	5.18	0.94	0.067
$N_{9}-C_{36}$	σ	C_{19} - H_{20}	σ^{*}	9.92	1.57	0.112
N_9-C_{36}	σ	C_{36} - H_{39}	σ^{*}	25.55	6.12	0.353
C_{11} - C_{13}	π	$C_{15}-C_{16}$	π^*	10.84	0.45	0.063
$C_{15}-C_{16}$	π	C_{11} - C_{13}	π^{*}	20.76	0.29	0.070
$C_{27}-C_{28}$	π	$O_3 - C_{26}$	π^*	14.28	0.27	0.058
$C_{27}-C_{28}$	π	$N_{6}-C_{30}$	$\pi^{}$	14.22	0.25	0.054
$C_{27}-C_{28}$	π	C_{31} - C_{32}	π^*	26.15	0.29	0.079
C_{31} - C_{32}	π	$O_4 - C_{34}$	$\pi^{}$	23.69	0.28	0.074
C_{31} - C_{32}	π	$N_{6}-C_{30}$	π^*	33.01	0.26	0.084
C_{31} - C_{32}	π	$C_{27}-C_{28}$	π	14.23	0.28	0.057
$C_{36}-H_{37}$	σ	$C_{36}-H_{39}$	σ_{\downarrow}	16.75	5.90	0.281
C ₃₆ -H ₃₈	σ	$C_{36}-H_{39}$	σ_{*}	10.19	5.90	0.219
$C_{36}-H_{39}$	σ	$C_{36}-H_{39}$	σ^{*}	53.30	5.89	0.500
$LP-O_1$	σ	C_{10} - C_{18}	σ^{*}	6.91	1.11	0.078
$LP-O_1$	π	C10 LP	σ^{*}	69.67	0.19	0.128
LP-O ₃	π	O_1 - H_2	σ^{*}	17.30	0.72	0.102
LP-O ₃	π	C_{18} - C_{26}	σ^{*}	11.93	0.77	0.087
LP-O ₃	π	$C_{26}-C_{27}$	σ^{*}	17.69	0.73	0.103
LP-O ₄	π	$N_7 - C_{34}$	σ^{*}	27.75	0.68	0.124
LP-O ₄	π	C_{31} - C_{34}	σ^{*}	18.45	0.71	0.104
LP-O ₅	π	$N_{7}-C_{35}$	σ^{*}	25.49	0.66	0.118
LP-O ₅	π	$N_{9}-C_{35}$	σ^{*}	26.18	0.66	0.119
LP-N ₆	π	$N_{9}-C_{30}$	σ^{*}	5.48	0.78	0.059
LP-N ₆	σ	C ₂₇ -C ₂₈	σ^{*}	8.92	0.90	0.081
LP-N ₆	σ	C_{30} - C_{31}	σ^{*}	9.77	0.88	0.084
LP-N ₇	σ	$O_4 - C_{34}$	π^*	51.60	0.29	0.111
LP-N ₇	σ	$O_{5}-C_{35}$	π^*	54.94	0.28	0.111
LP-N ₉	σ	O ₅ -C ₃₅	π^*	55.52	0.27	0.111
LP-N ₉	σ	N6-C30	π^*	52.49	0.26	0.106
$LP-C_{10}$	σ	C_{11} - C_{13}	π^*	48.29	0.16	0.101
$LP-C_{18}$	π	$O_2 - C_{26}$	π^*	78 19	0.12	0 104
LP-C ₁₀	π	$C_{15} - C_{16}$	π^*	30.44	0.32	0.105
N_{6} - C_{20}	π^*	C_{13} C_{10}	π^*	113.08	0.03	0 079
N_{ϵ} -C ₂₀	π^*	$C_{21} - C_{22}$	π^*	100.04	0.03	0.083
$C_{11} = C_{12}$	π^*	$C_{15} - C_{16}$	π^*	28 64	0.16	0.111
$C_{11} C_{13}$	π^*	$C_{15} C_{16}$	л 	11 03	0.37	0.143
$\sim_{15}\sim_{16}$	11	C 16-1117	0	11.05	0.57	0.175

C_{15} - C_{16}	π^{*}	C_{18} - C_{26}	σ^{*}	0.51	0.26	0.025
C ₁₅ -C ₁₆	π^{*}	C ₁₉ -H ₂₀	σ^{*}	17.78	0.63	0.238
$C_{15}-C_{16}$	π^{*}	C_{36} - H_{37}	σ^{*}	5.95	0.24	0.086
C_{15} - C_{16}	π^{*}	C_{36} - H_{38}	σ^{*}	5.84	0.26	0.089
C ₁₅ -C ₁₆	π^{*}	C ₃₆ -H ₃₉	σ^{*}	30.04	5.18	0.890

 Table S12: Natural bond orbital (NBO) analysis of 6d

Donor(i)	Туре	Acceptor(j)	Туре	E (2) ^a [kJ/mol]	E(j)-E(i) ^b [a.u.]	F(i,j)c [a.u.]
N ₆₁ -C ₃₅	π	C ₃₃ -C ₃₄	π^*	29.69	0.32	0.090
N9-C39	σ	C ₃₉ -H ₄₂	σ^{*}	24.55	6.07	0.345
C ₁₀ -C ₁₁	π	O ₃ -C ₂₉	π^{*}	26.96	0.25	0.076
C ₁₀ -C ₁₁	π	C ₁₂ -C ₁₄	π^{*}	13.38	0.29	0.057
C_{10} - C_{11}	π	C ₁₆ -C ₁₇	π^{*}	17.65	0.36	0.073
C_{12} - C_{14}	π	C ₁₀ -C ₁₁	π^{*}	23.77	0.27	0.074
C_{12} - C_{14}	π	C ₁₆ -C ₁₇	π^{*}	13.80	0.36	0.063
C ₁₆ -C ₁₇	π	C ₁₀ -C ₁₁	π^{*}	15.57	0.27	0.060
C ₁₆ -C ₁₇	π	C ₁₂ -C ₁₄	π^{*}	21.01	0.29	0.070
C_{30} - C_{31}	π	O3-C ₂₉	π^{*}	14.37	0.27	0.058
C_{30} - C_{31}	π	N ₆ -C ₃₅	π^{*}	30.65	0.27	0.082
C30-C ₃₁	π	C ₃₃ -C ₃₄	π^{*}	15.82	0.27	0.059
C ₃₃ -C ₃₄	π	O ₄ -C ₃₇	π^{*}	23.48	0.29	0.076
C33-C ₃₄	π	N ₆ -C ₃₅	π^{*}	12.18	0.28	0.053
C ₃₃ -C ₃₄	π	C ₃₀ -C ₃₁	π^{*}	25.04	0.30	0.079
C ₃₉ -H ₄₀	σ	C ₃₉ -H ₄₂	σ^{*}	17.37	5.85	0.285
C ₃₉ -H ₄₂	σ	C ₁₉ -H ₂₀	σ^{*}	15.60	1.18	0.121
C ₃₉ -H ₄₂	σ	C_{21} - H_{22}	σ^{*}	20.74	1.31	0.147
C ₃₉ -H ₄₂	σ	C ₃₉ -H ₄₂	σ^{*}	51.83	5.84	0.491
LP-O ₁	π	C ₁₀ -C ₁₁	π^{*}	37.59	0.33	0.106
LP-O ₃	π	C ₁₀ -C ₂₉	σ^{*}	11.76	0.77	0.087

LP-O ₃	π	C_{29} - C_{30}	σ^{*}	17.05	0.75	0.103
LP-O ₄	π	N ₇ -C ₃₇	σ^{*}	27.70	0.67	0.124
LP-O ₄	π	C ₃₃ -C ₃₇	σ^{*}	17.97	0.71	0.103
LP-O ₅	π	N ₇ -C ₃₈	σ^{*}	25.57	0.66	0.118
LP-O ₅	π	N ₉ -C ₃₈	σ^{*}	26.12	0.66	0.119
LP-N ₆	σ	C ₃₀ -C ₃₅	σ^{*}	8.79	0.89	0.08
LP-N ₆	σ	C_{33} - C_{34}	σ^{*}	10.04	0.89	0.086
LP-N ₇	σ	O ₄ -C ₃₇	π^*	52.43	0.29	0.111
LP-N ₉	σ	C_{33} - C_{34}	π^*	47.08	0.27	0.103
LP-N ₉	σ	C_{39} - C_{40}	σ^{*}	5.06	0.77	0.062
O ₃ -C ₂₉	π	C_{10} - C_{11}	π^*	99.51	0.02	0.072
O ₃ -C ₂₉	π	C_{30} - C_{31}	π^*	76.04	0.01	0.056
N ₆ -C ₃₅	π	C_{30} - C_{31}	π^*	145.81	0.02	0.084
C_{10} - C_{11}	π	C_{12} - C_{14}	π^*	170.92	0.02	0.083
C_{10} - C_{11}	π	C_{16} - C_{17}	π^*	31.26	0.09	0.077
C_{12} - C_{14}	π	C_{16} - C_{17}	π^*	34.29	0.07	0.080
C_{16} - C_{17}	π	C ₁₉ -H ₂₀	σ^{*}	5.65	0.56	0.126
C_{16} - C_{17}	π	C_{21} - H_{22}	σ^{*}	5.79	0.69	0.145
C_{16} - C_{17}	π	C ₃₉ -H ₄₂	σ^{*}	10.90	5.22	0.545
C ₃₃ -C ₃₄	π	C ₃₀ -C ₃₁	π^*	183.60	0.02	0.081

Table S13: TD-DFT analysis of FMOs

Com.	No	DFT λ (<i>nm</i>)	E (<i>cm</i> ⁻¹)	f	MO contributions
	1	364.466438392	27437.3685657	0.1403	H→L (97%)
6a	2	342.545083609	29193.2375577	0.0017	H→L (99%)
	3	327.627812309	30522.4392566	0.013	H-4→L (27%), H-3→L
					(29%), H-2→L (15%), H-
					1→L (23%)
	4	364.466438392	27437.3685657	0.1403	H→L (97%)
6b	5	342.545083609	29193.2375577	0.0017	H→L +1(99%)
	6	327.627812309	30522.4392566	0.013	H-4→L (27%), H-3→L
					(29%), H-2→L (15%), H-

	-				1→L (23%)
	7	365.670362214	27347.0344697	0.1357	H→L (97%)
6c	8	342.990464237	29155.3294995	0.0018	H→L +1(99%)
	9	327.749062921	30511.1474946	0.0131	H-4→L (26%), H-3→L
					(33%), H-2→L (13%), H-
					1→L (22%)
	10	368.200614772	27159.1072877	0.1197	H→L (96%)
6d	11	350.277412737	28548.8005689	0.0021	H→L+1 (98%)
	12	327.394225012	30544.2162262	0.0196	H-4→L (20%), H-3→L
					(38%), H-1→L (28%), H-
					2→L (8%)
Come - common d MO-molometric arbitral H-HOMO I - HIMO Consection stress of					

Com. = compound MO=molecular orbital, H=HOMO, L=LUMO, *f*= oscillator strength

 Table S13: UV-Vis experimental data in different solvents of 6a-d

Salvant	6a			6с		
Solvent	λ _{max}		Absorbance	ince λ _{max} 305	Absorbance	
1,4-dioxane	300		2.5850		2.3565	
Acetone	332		1.4814	332	1.5702	
DMSO	305		2.3979	311	2.1135	
Salvant	6b			6d		
Solvent	λ_{max}	Absorbance		λ_{max}	Absorbance	
1,4-dioxane	373	2.0000		372	1.9281	
Acetone	377	2.5086		365	1.8297	
DMSO	300	1.8477		313	1.8827	

Table S15. Dipole polarizability and major contributing tensor (au) of the studied 6a-d

Polarizability	Compounds				
	6a	6b	6c	6d	
α_{xx}	346	331	355	355	
α_{vv}	230	213	241	263	
α_{zz}	137	126	156	166	
<i>a_{total}</i>	238	223	251	261	

Table S16: Computed first hyperpolarizabilities (β_{tot}) and major contributing tensor (*au*) of the studied **6a-d**

- Dolovizability	Compounds					
Folarizability -	6a	6b	6c	6d		
β_{xxx}	836	1777	646	1180		
β_{xxy}	-1070	-461	-1089	-801		
β_{xyy}	-33	-372	144	-162		
β_{vvv}	194	66	282	350		
β_{xxz}	93	-207	253	-139		
β_{vvz}	24	-66	33	-43		
β_{xzz}	-14	-11	-27	2		
β_{vzz}	55	-0.43	63	69		
β_{zzz}	2	35	-1.35	66		

Table S17. X-ray crystallographic data of 6a-d

Crystal data	6a	6b	6c	6d
Diffractometer	Bruker Kappa APEXII CCD	Bruker Kappa APEXII CCD	Bruker Kappa APEXII CCD	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2005)	Multi-scan (<i>SADABS</i> ; Bruker, 2005)	Multi-scan (<i>SADABS</i> ; Bruker, 2005)	Multi-scan (<i>SADABS</i> ; Bruker, 2005)
Refinement				
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained

Figure S1: Experimental FT-IR spectrum of 6a

Figure S2: Experimental FT-IR spectrum of 6b

Figure S3: Experimental FT-IR spectrum of 6c

Figure S4: Experimental FT-IR spectrum of 6d

6a

6c

6d

Figure S5: MEP surfaces of 6a-d

Figure S6: Spectroscopic spectra of 6a-d