Supporting Information

Enantioselective Bromination of Axially Chiral Cyanoarenes in the Presence of Bifunctional Organocatalysts

Yuuki Wada, Akira Matsumoto, Keisuke Asano,* and Seijiro Matsubara*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan

Contents

Instrumentation and Chemicals	
Experimental Procedure	S 3
Table S1	S28
Scheme S1	S30
Scheme S2	S31
Scheme S3	S32
Scheme S4	S33
Scheme S5	S34
Characterization Data of Products	S35
NMR Spectra (¹ H, ¹³ C) of Products	S41
HPLC Chromatogram Profiles	S63
ORTEP Drawing of 5c	S74
DFT Calculations of Rotational Barriers of 1a, 1a-Br, and 2a	S77

Instrumentation and Chemicals

¹H and ¹³C Nuclear magnetic resonance spectra were taken on a Varian UNITY INOVA 500 (¹H, 500 MHz; ¹³C, 125.7 MHz) spectrometer using tetramethylsilane as an internal standard for ¹H NMR ($\delta = 0$ ppm) and CDCl₃ as an internal standard for ¹³C NMR $(\delta = 77.0 \text{ ppm})$. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, br = broad, m = multiplet), coupling constants (Hz), integration. 19 F NMR spectra were measured on a Varian Mercury 200 (¹⁹F, 188 MHz) spectrometer with hexafluorobenzene as an internal standard ($\delta = 0$ ppm). Mass spectra were recorded on a Thermo Scientific Exactive (ESI, APCI) spectrometers. High performance liquid chromatography (HPLC) was performed with a SHIMADZU Prominence. Infrared (IR) spectra were determined on a SHIMADZU IR Affinity-1 spectrometer. Melting points were determined using a YANAKO MP-500D. Optical rotations were measured on a HORIBA SEPA-200. X-ray data were taken on a Rigaku XtaLAB mini diffractometer equipped with a CCD detector. TLC analyses were performed by means of Merck Kieselgel 60 F₂₅₄ (0.25 mm) Plates. Visualization was accomplished with UV light (254 nm) and/or such as an aqueous alkaline KMnO₄ solution followed by heating.

Flush column chromatography was carried out using Kanto Chemical silica gel (spherical, 40–50 μ m). Unless otherwise noted, commercially available reagents were used without purification.

DFT calculations were performed with Gaussian 09 packages. Geometry optimizations were carried out using the B3LYP hybrid functional with the 6-31+G(d,p) basis sets. Single-point calculations were carried out using M06-2X hybrid functional with the 6-311++G(2d,3p) basis set.

Experimental Procedure

General procedure for asymmetric synthesis of axially chiral cyanoarenes 2

In a 20 mL round-bottom flask were sequentially placed substrate **1** (0.10 mmol), quinine-derived bifunctional catalyst **3c** (2.8 mg, 0.0050 mmol), and CH₂Cl₂ (10 mL). The solution was stirred at $-30 \,^{\circ}$ C for 1 h. To the solution was added *N*-bromoacetamide (**4a**, 41 mg, 0.30 mmol or 28 mg, 0.20 mmol) in 5 portions after every 3 h. The mixture was stirred for 24 h or 72 h, and quenched with saturated aqueous Na₂S₂O₃ (5.0 mL). The aqueous phase was extracted with EtOAc (5.0 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flush silica gel column chromatography using hexane/CHCl₃ (v/v = 1:2–1:10) or CHCl₃ as an eluent afforded the corresponding axially chiral cyanoarene **2**.

Racemic compounds were prepared using quinuclidine as a catalyst.

General procedure for methylation of 2a-2d, 2f, 2g, and 2i for analysis

In a 5 mL vial, to a solution of **2** in CH_2Cl_2 (0.80 mL) and MeOH (0.20 mL) was slowly added (diazomethyl)trimethylsilane (0.50 mL, 0.6 M in hexane, 0.30 mmol) at ambient temperature. After being stirred for 2 h, the mixture was passed through a short silica gel pad using CH_2Cl_2 and concentrated in vacuo. The reaction proceeded quantitatively to afford the corresponding product **5**, and the crude product was used for analysis without further purification.

General procedure for acetylation of 2e and 2h for analysis

In a 5 mL vial, to a solution of **2** and triethylamine (0.020 mL, 0.15 mmol) in CH₂Cl₂ (0.30 mL) was slowly added acetyl chloride (0.010 mL, 0.14 mmol) at ambient temperature. After the mixture was stirred for 20 h, H₂O (10 mL) was added. The aqueous phase was extracted with CH₂Cl₂ (5.0 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flush silica gel column chromatography using hexane/CHCl₃ (v/v = 1:1) as an eluent afforded the corresponding product **6**.

In 200 mL round-bottom flask, quinine (7, 2.0 g, 6.0 mmol) and triphenylphosphine (1.9 g, 7.2 mmol) were dissolved in THF (36 mL), and the solution was cooled to 0 °C. To the solution was subsequently added diethyl azodicarboxylate (3.3 mL, 7.2 mmol) and diphenyl phosphoryl azide (1.5 mL, 7.8 mmol) at 0 °C. After the mixture was stirred at ambient temperature for 24 h, it was heated to 50 °C and stirred for 10 h. Triphenylphosphine (2.0 g, 7.8 mmol) was added again, and the mixture was stirred at 50 °C for additional 15 h. After the mixture was cooled to ambient temperature, H₂O (0.60 mL) was added, and the mixture was stirred for 24 h. The solvents were removed in vacuo, and the residue was dissolved in CH₂Cl₂/1.0 M aqueous HCl (50 mL/50 mL). The aqueous phase was separated and washed with CH_2Cl_2 (25 mL \times 4). It was subsequently made alkaline with aqueous NH₃, and the aqueous phase was extracted with CH_2Cl_2 (25 mL × 4). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using EtOAc/CH₃OH (v/v = 8:1) then EtOAc/CH₃OH (v/v = 4:1) then CHCl₃/CH₃OH (v/v = 4:1) as an eluent gave (9S)-amino-9-deoxyquinine 8.

Next, to the solution of **8** (0.77 g, 2.4 mmol) in THF (5.0 mL) was added triethylamine (0.41 mL, 2.4 mmol). To the resulting solution was slowly added a solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.66 mL, 4.8 mmol) in THF (5.0 mL) at ambient temperature. The mixture was stirred overnight, and the solvents were removed in

vacuo. The product was purified by flush silica gel column chromatography using CHCl₃/CH₃OH (v/v = 20:1) as an eluent, and it was subsequently dissolved in CH₂Cl₂ and washed with aqueous NH₃ to give **3c**.

3c. White solid; 66% yield (for 2steps from quinine, 2.2 g). $[\alpha]_D^{20}$ –108.2 (*c* 0.73, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.76 (d, *J* = 4.5 Hz, 1H), 8.22 (s, 2H), 8.05 (d, *J* = 9.0 Hz, 1H), 7.99 (s, 1H), 7.80 (br s, 1H), 7.69 (d, *J* = 2.5 Hz, 1H), 7.42 (d, *J* = 2.5 Hz, 1H), 5.75 (ddd, *J* = 16.0, 10.5, 7.5 Hz, 1H), 5.4 (br s, 1H), 5.02 (d, *J* = 16.0 Hz, 1H), 4.99 (d, *J* = 10.5 Hz, 1H), 4.00 (s, 3H), 3.31 (m, 1H), 3.22 (m, 1H), 3.11 (m, 1H), 2.82–2.74 (m, 2H), 2.35 (m, 1H), 1.73–1.65 (m, 3H), 1.52 (m, 1H), 1.04 (m, 1H). ¹³C NMR (CDCl₃) δ 164.4, 158.0, 147.5, 144.7, 141.0, 135.9, 132.0 (q, *J* = 33.9 Hz), 131.9, 128.2, 127.6, 127.5, 125.10, 125.07, 122.8 (q, *J* = 273.4 Hz), 121.6, 114.8, 101.6, 59.9, 55.9, 55.6, 51.9, 40.9, 39.4, 27.8, 27.2, 26.1. ¹⁹F NMR (CDCl₃) δ 98.8. Mp. 111.8–112.8 °C. TLC: R_f 0.17 (CHCl₃/CH₃OH = 20:1). IR (KBr): 3375, 2942, 1653, 1622, 1510, 1281, 1184, 1137, 908, 853 cm⁻¹. HRMS Calcd for C₂₉H₂₇F₆N₃O₂Na: [M+Na]⁺, 586.1900. Found: *m*/*z* 586.1902.

Procedure for preparation of substrate 1a

Procedure for preparation of 10

In a 500 mL round-bottom flask were sequentially placed 1-bromo-2methylnaphthalene (**9**, 7.7 mL, 50 mmol), azobisisobutyronitrile (0.82 g, 5.0 mmol), *N*bromosuccinimide (14 g, 75 mmol) and DCE (0.30 L). The solution was refluxed in an oil bath maintained at 110 °C for 20 h. After the mixture was cooled to ambient temperature, H₂O (0.10 L) was added, and the aqueous phase was extracted with CH₂Cl₂ (50 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to afford 1-bromo-2-(bromomethyl)naphthalene (**10**), which was used for the next step without further purification.

1-Bromo-2-(bromomethyl)naphthalene (10): CAS RN [37763-43-2].

Brown solid. ¹H NMR (CDCl₃) δ 8.33 (d, *J* = 8.0 Hz, 1H), 7.81 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.79 (d, *J* =

8.0 Hz, 1H), 7.62 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.54 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.51 (dd, J = 8.0, 1.0 Hz, 1H), 4.86 (s, 2H). ¹³C NMR (CDCl₃) δ 134.9, 134.1, 132.4, 128.3, 128.1, 127.8, 127.7, 127.6, 127.2, 124.9, 34.8.

Procedure for preparation of 11

In a 500 mL round-bottom flask were sequentially placed **10**, CaCO₃ (30 g, 0.30 mol), H₂O (0.10 L), and 1,4-dioxane (0.10 L). The mixture was refluxed in an oil bath maintained at 120 °C for 20 h. After being cooled to ambient temperature, the suspension was filtered. The filtrate was acidified with 1.0 M aqueous HCl, and the aqueous phase was extracted with CH₂Cl₂ (50 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to afford (1-bromonaphthalen-2-yl)methanol (**11**), which was used for the next step without further purification.

(1-Bromonaphthalen-2-yl)methanol (11): CAS RN [76635-70-6].

Brown solid.

¹H NMR (CDCl₃) δ 8.31 (d, J = 8.5 Hz, 1H), 7.84 (dd, J = 8.0, 1.0 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.64 (dd, J = 8.0, 1.0 Hz, 1H), 7.61 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.53 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 5.00 (d, J = 6.5 Hz, 2H), 2.10 (t, J = 6.5 Hz, 1H). ¹³C NMR (CDCl₃) δ 137.7, 134.0, 132.1, 128.1, 128.0, 127.5, 126.9, 126.5, 126.0, 122.4, 65.9.

Procedure for preparation of 12

In a 500 mL round-bottom flask, to a solution of **11** in acetone (0.20 L) was slowly added Jones reagent (40 mL, ca. 2.5 M, 0.10 mol) at ambient temperature. After being stirred for 24 h, the reaction was quenched with *i*-PrOH (10 mL), and concentrated in vacuo. To the resulting mixture was subsequently added H₂O, and the aqueous phase was extracted with EtOAc (50 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to afford 1-bromo-2-naphthoic acid (**12**), which was used for the next step without further purification.

1-Bromo-2-naphthoic acid (12): CAS RN [20717-79-7].

Brown solid.

¹H NMR (CDCl₃) δ 8.53 (d, J = 8.5 Hz, 1H), 7.89–7.87 (m, 3H), 7.68 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.64 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H). ¹³C NMR (CDCl₃) δ 171.9, 135.6, 132.5, 129.4, 129.0, 128.6, 128.2, 127.9, 126.4, 124.1.

Procedure for preparation of 13

In a 100 mL round-bottom flask were sequentially placed **12** and $SOCl_2$ (40 mL), and the mixture was refluxed in an oil bath maintained at 70 °C for 4 h. The reaction mixture was concentrated in vacuo, and 15 M aqueous NH₃ (50 mL) was slowly added. After the resulting mixture was stirred at ambient temperature for 15 h, precipitates were filtrated, washed with H₂O, and dried in vacuo to afford 1-bromo-2-naphthamide (**13**), which was used for the next step without further purification.

1-Bromo-2-naphthamide (13): CAS RN [288607-09-0].

Brown solid.

¹H NMR (CDCl₃) δ 8.38 (d, J = 8.0 Hz, 1H), 7.87 (dd, J = 8.0, 1.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.67 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.61 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.59 (dd, J = 8.0, 1.0 Hz, 1H), 6.04 (br s, 1H), 5.90 (br s, 1H). ¹³C NMR (CDCl₃) δ 170.3, 135.3, 134.7, 131.9, 128.4, 128.3, 128.2, 128.0, 127.8, 125.1, 119.7.

Procedure for preparation of 14

In a 100 mL round-bottom flask were sequentially placed **13** and $SOCl_2$ (40 mL), and the mixture was refluxed in an oil bath maintained at 70 °C for 14 h. Precipitates were filtrated, washed with H₂O, and dried in vacuo to afford 1-bromo-2-naphthonitrile (**14**), which was used for the next step without further purification.

1-Bromo-2-naphthonitrile (14): CAS RN [20176-08-3].

Brown solid; 91% yield (5 steps, 10.6 g).

¹H NMR (CDCl₃) δ 8.34 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.90 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.73 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.69 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.60 (dd, *J* = 8.0, 1.0 Hz, 1H). ¹³C NMR (CDCl₃) δ 135.4, 131.7, 129.6, 129.0, 128.6, 128.5, 128.3, 127.4, 118.1, 114.7, 113.5.

Procedure for preparation of 1a

In a 100 mL round-bottom flask, **14** (1.8 g, 7.5 mmol) and (3-hydroxyphenyl)boronic acid **15a** (1.2 g, 9.0 mmol) were dissolved in toluene (42 mL) and EtOH (6.0 mL). To the mixture were sequentially added PdCl₂(dppf)·CH₂Cl₂ (0.18 g, 0.22 mmol), Na₂CO₃ (4.0 g, 38 mmol), and H₂O (12 mL). The mixture was refluxd in an oil bath maintained at 120 °C for 38 h. After the mixture was cooled to ambient temperature, H₂O was added, and the aqueous phase was extracted with EtOAc (30 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane/EtOAc (v/v = 3:1) as an eluent gave 1-(3-hydroxyphenyl)-2-naphthonitrile (**1a**).

1-(3-Hydroxyphenyl)-2-naphthonitrile (1a).

White solid; 82% yield (1.5 g).

¹H NMR (CDCl₃) δ 7.93 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.75 (dd, J = 8.5, 1.0 Hz, 1H), 7.69 (dd, J = 8.5, 1.0 Hz, 1H), 7.64 (ddd, J = 8.5, 7.5, 1.0 Hz, 1H), 7.52 (ddd, J = 8.5, 7.5, 1.0 Hz, 1H), 7.43 (dd, J = 8.0, 8.0 Hz, 1H), 7.03–6.99 (m, 2H), 6.93 (dd, J = 2.0, 1.0 Hz, 1H), 5.16 (br s, 1H). ¹³C NMR (CDCl₃) δ 155.7, 146.1, 137.7, 134.9, 131.5, 129.9, 128.7, 128.5, 128.2, 127.6, 127.4, 126.6, 122.4, 118.9, 117.0, 116.0, 109.4. Mp. 150.0–150.6 °C. TLC: R_f 0.31 (hexane/EtOAc = 3:1). IR (KBr): 3361, 2238, 1581, 1493, 1384, 1318, 892, 874, 821 cm⁻¹. HRMS Calcd for C₁₇H₁₁NONa: [M+Na]⁺,

268.0733. Found: *m/z* 268.0735.

General procedure for preparation of substrates 1b–1d and 1f–1h

General procedure for preparation of 16

In a 100 mL round-bottom flask, **14** (0.58 g, 2.5 mmol) and boronic acid **7** (2.5–3.0 mmol) were dissolved in toluene (18 mL) and EtOH (2.5 mL). To the mixture were sequentially added PdCl₂(dppf)·CH₂Cl₂ (0.061 g, 0.075 mmol), Na₂CO₃ (1.3 g, 13 mmol), and H₂O (12 mL). The mixture was refluxd in an oil bath maintained at 120 °C for 24 h. After the mixture was cooled to ambient temperature, H₂O was added, and the aqueous phase was extracted with EtOAc (20 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane/CHCl₃ (v/v = 3:2–1:2) as an eluent gave the corresponding product **16**.

1-(3-Methoxy-5-(trifluoromethyl)phenyl)-2-naphthonitrile (16b).

White solid; 83% yield (0.68 g).

¹H NMR (CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.72 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.66 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.64 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.55 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.30 (d, *J* = 2.0 Hz, 1H), 7.29 (m, 1H), 7.17 (dd, *J* = 2.0, 2.0 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (CDCl₃) δ 159.9, 144.5, 138.5, 134.8, 132.2 (q, *J* = 32.6 Hz), 131.3, 129.2, 128.9, 128.4, 128.0, 126.8, 126.6, 123.7 (q, *J* = 273.4 Hz), 1

19.2, 119.0 (q, J = 3.8 Hz), 118.4, 111.3 (q, J = 3.9 Hz), 109.8, 55.7 . ¹⁹F NMR (CDCl₃) δ 99.1. Mp. 141.8–142.5 °C. TLC: R_f 0.24 (hexane/CHCl₃ = 1:1). IR (KBr): 3085, 2231, 1602, 1395, 1314, 1182, 1060, 1004, 894, 868, 823 cm⁻¹. HRMS Calcd for C₁₉H₁₂F₃NONa: [M+Na]⁺, 350.0763. Found: *m/z* 350.0771.

1-(3-Methoxy-5-methylphenyl)-2-naphthonitrile (16c).

White solid; 70% yield (0.48 g).

¹H NMR (CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.75 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.68 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.63 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.51 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 6.88 (dd, *J* = 1.0, 1.0 Hz, 1H), 6.84 (d, *J* = 1.0 Hz, 1H), 6.78 (d, *J* = 1.0 Hz, 1H), 3.84 (s, 3H), 2.43 (s, 3H). ¹³C NMR (CDCl₃) δ 159.5, 146.5, 139.7, 137.4, 134.8, 131.6, 128.6, 128.3, 128.1, 127.5 (2C), 126.7, 123.2, 118.8, 115.2, 112.6, 109.5, 55.3, 21.7. Mp. 149.5–150.2 °C. TLC: R_f 0.18 (hexane/CHCl₃ = 3:2). IR (KBr): 3074, 2955, 2226, 1594, 1468, 1391, 1337, 1156, 1067, 832 cm⁻¹. HRMS Calcd for C₁₉H₁₅NONa: [M+Na]⁺, 296.1046. Found: *m/z* 296.1053.

1-(3-Isopropyl-5-methoxyphenyl)-2-naphthonitrile (16d).

White solid; 92% yield (0.68 g).

¹H NMR (CDCl₃) δ 7.93 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.79 (dd, J = 8.5, 1.0 Hz, 1H), 7.69 (dd, J = 8.5, 1.0 Hz, 1H), 7.63 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.51 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 6.93 (dd, J = 1.5, 1.5 Hz, 1H), 6.91 (dd, J = 2.5, 1.5 Hz, 1H), 6.79 (dd, J = 2.5, 1.5 Hz, 1H), 3.85 (s, 3H), 2.97 (sept, J = 7.0 Hz, 1H), 1.30 (m, 6H). ¹³C NMR (CDCl₃) δ 159.4, 150.7, 146.6, 137.3, 134.8, 131.5, 128.6, 128.3, 128.1, 127.43, 127.39, 126.7, 120.9, 118.8, 112.9, 112.5, 109.5, 55.2, 34.1, 23.9, 23.8. Mp. 90.8– 91.5 °C. TLC: R_f 0.19 (hexane/CHCl₃ = 3:2). IR (KBr): 2962, 2230, 1595, 1465, 1388, 1327, 1288, 1047, 866, 817 cm⁻¹. HRMS Calcd for C₂₁H₁₉NONa: [M+Na]⁺, 324.1359. Found: *m*/*z* 324.1365.

1-(4-Fluoro-3-methoxyphenyl)-2-naphthonitrile (16f).

White solid; 85% yield (0.59 g).

¹H NMR (CDCl₃) δ 7.95 (d, J = 8.5 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.72 (dd, J = 8.5, 1.0 Hz, 1H), 7.70 (dd, J = 8.5, 1.0 Hz, 1H), 7.65 (ddd, J = 8.5, 6.5, 1.0 Hz, 1H), 7.54 (ddd, J = 8.5, 6.5, 1.0 Hz, 1H), 7.28 (d, J = 8.5 Hz, 1H), 7.04 (dd, J = 8.5, 2.0 Hz, 1H), 6.99 (m, 1H), 3.92 (s, 3H). ¹³C NMR (CDCl₃) δ 152.6 (d, J = 247.5 Hz), 147.7 (d, J = 10.4 Hz), 145.4, 134.9, 132.6 (d, J = 3.8 Hz), 131.6, 128.8, 128.7, 128.3, 127.8, 127.1, 126.6, 122.6 (d, J = 7.7 Hz), 118.7, 116.3 (d, J = 19.2 Hz), 115.2, 109.9, 56.3. ¹⁹F NMR (CDCl₃) δ 26.9. Mp. 164.5–165.5 °C. TLC: R_f 0.33 (hexane/CHCl₃ = 1:2). IR (KBr): 3074, 2226, 1604, 1520, 1412, 1259, 1119, 1033, 883, 833 cm⁻¹. HRMS Calcd for C₁₈H₁₂FNOFNa: [M+Na]⁺, 300.0795. Found: *m/z* 300.0801.

1-(4-Chloro-3-methoxyphenyl)-2-naphthonitrile (16g).

White solid; 80% yield (0.59 g).

¹H NMR (CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.72 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.71 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.65 (ddd, *J* = 8.5, 6.5, 1.0 Hz, 1H), 7.55 (dd, *J* = 8.0, 0.5 Hz, 1H), 7.54 (ddd, *J* = 8.5, 6.5, 1.0 Hz, 1H), 7.04 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.99 (m, 1H), 3.93 (s, 3H). ¹³C NMR (CDCl₃) δ 155.0, 145.2, 136.1, 134.8, 131.4, 130.4, 128.8, 128.3, 127.8, 127.0, 126.6, 123.3, 122.9, 118.6, 113.8, 109.7, 56.2. Mp. 184.5–185.5 °C. TLC: R_f 0.36 (hexane/CHCl₃ = 1:2). IR (KBr): 3074, 2225, 1565, 1464, 1402, 1281, 1064, 1032, 883, 832 cm⁻¹. C₁₈H₁₂ClNONa: [M+Na]⁺, 316.0500. Found: *m/z* 316.0507.

1-(3-Methoxy-4-methylphenyl)-2-naphthonitrile (16h).

White solid; 75% yield (0.38 g).

¹H NMR (CDCl₃) δ 7.93 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.79 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.69 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.63 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.51 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 6.95 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.89 (d, *J* = 1.5 Hz, 1H), 3.93 (s, 3H), 2.33 (s, 3H). ¹³C NMR (CDCl₃) δ 157.6, 146.7, 134.87, 134.86, 131.8, 130.7, 128.6, 128.3, 128.2, 127.50, 127.46, 127.4, 126.7, 121.9, 119.0, 111.6, 109.7, 55.4, 16.2. Mp. 191.2–192.0 °C. TLC: R_f 0.16 (hexane/CHCl₃ = 3:2). IR (KBr): 2976, 2223, 1576, 1506, 1468, 1253, 1180, 1038, 889, 829 cm⁻¹. HRMS Calcd for C₁₉H₁₅NONa: [M+Na]⁺, 296.1046. Found: *m*/*z* 296.1052.

General procedure for preparation of 1

In a 20 mL round-bottom flask, to a solution of **6** (1.0 mmol) in CH₂Cl₂ (10 mL) was added a solution of boron tribromide (5.0 mL, ca. 1.0 M in CH₂Cl₂, 5.0 mmol) at -78 °C, and the mixture was stirred at ambient temperature for 18 h. The reaction mixture was cooled to 0 °C and quenched with H₂O (2.0 mL). After the mixture was neutralized with saturated aqueous NaHCO₃, the aqueous phase was extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using CHCl₃, CH₂Cl₂, or hexane/EtOAc (v/v = 5:1) as an eluent gave the corresponding 1-(3-hydroxyphenyl)-2-naphthonitrile **1**.

1-(3-Hydroxy-5-(trifluoromethyl)phenyl)-2-naphthonitrile (1b).

CN OH

White solid; 76% yield (0.36 g). ¹H NMR (CDCl₃) δ 7.97 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.71 (dd, J = 8.5, 1.0 Hz, 1H), 7.67 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.65 (dd, J = 8.5, 1.0 Hz, 1H), 7.56 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.27 (m, 2H), 7.12 (dd, J = 1.5, 1.5 Hz, 1H), 5.61 (br s, 1H). ¹³C NMR (CDCl₃) δ 156.5, 144.7, 138.5, 134.9, 132.4 (q, J = 32.6 Hz), 131.2, 129.2, 129.0, 128.4, 128.1, 126.9, 126.4, 123.5 (q, J = 272.4 Hz), 120.4, 118.8 (q, J = 3.9 Hz), 118.6, 113.1 (q, J = 3.9 Hz), 109.3. ¹⁹F NMR (CDCl₃) δ 99.0. Mp. 45.6–46.6 °C. TLC: R_f 0.12 (CH₂Cl₂). IR (KBr): 3367, 2235, 1606, 1462, 1326, 1126, 868, 820 cm⁻¹. HRMS Calcd for C₁₈H₁₀F₃NONa: [M+Na]⁺, 336.0607. Found: *m*/*z* 336.0611.

1-(3-Hydroxy-5-methylphenyl)-2-naphthonitrile (1c).

White solid; 83% yield (0.32 g).

¹H NMR (CDCl₃) δ 7.92 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.76 (dd, J = 8.5, 1.0 Hz, 1H), 7.68 (dd, J = 8.5, 1.0 Hz, 1H), 7.63 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.51 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 6.82 (d, J = 1.5 Hz, 1H), 6.82 (d, J = 1.5 Hz, 1H), 6.72 (dd, J = 1.5, 1.5 Hz, 1H), 5.02 (br s, 1H), 2.40 (s, 3H). ¹³C NMR (CDCl₃) δ 155.6, 146.3, 140.2, 137.6, 134.9, 131.6, 128.7, 128.4, 128.2, 127.50, 127.46, 126.7, 123.3, 118.9, 116.7, 114.2, 109.4, 21.5. Mp. 197.5–198.3 °C. TLC: R_f 0.09 (CHCl₃). IR (KBr): 3398, 2933, 2224, 1602, 1391, 1342, 1196, 1159, 1059, 841, 821 cm⁻¹. HRMS Calcd for C₁₈H₁₃NONa: [M+Na]⁺, 282.0889. Found: *m/z* 282.0890.

1-(3-Hydroxy-5-isopropylphenyl)-2-naphthonitrile (1d).

White solid; 99% yield (0.45 g).

¹H NMR (CDCl₃) δ 7.92 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.79 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.68 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.63 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.52 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 6.90 (dd, *J* = 1.5, 1.5 Hz, 1H), 6.88 (dd, *J* = 2.5, 1.5 Hz, 1H), 6.75 (dd, *J* = 2.5, 1.5 Hz, 1H), 5.01 (br s, 1H), 2.95 (sept, *J* = 6.5 Hz, 1H), 1.307 (d, *J* = 6.5 Hz, 3H), 1.300 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (CDCl₃) δ 155.5, 151.2, 146.4, 137.5,

134.8, 131.5, 128.7, 128.4, 128.2, 127.51, 127.46, 126.7, 121.1, 118.9, 114.4, 114.0, 109.5, 34.0, 23.9, 23.8. Mp. 187.5–188.5 °C. TLC: $R_f 0.25$ (hexane/EtOAc = 5:1). IR (KBr): 3345, 2962, 2236, 1597, 1395, 1344, 1298, 1181, 864, 820 cm⁻¹. HRMS Calcd for $C_{20}H_{17}NONa$: [M+Na]⁺, 310.1202. Found: *m/z* 310.1203.

1-(4-Fluoro-3-hydroxyphenyl)-2-naphthonitrile (1f).

White solid; 95% yield (0.25 g).

¹H NMR (CDCl₃) δ 7.93 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.71 (dd, J = 8.5, 1.0 Hz, 1H), 7.69 (dd, J = 8.5, 1.0 Hz, 1H), 7.64 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.53 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.27 (dd, J = 10.0, 8.0 Hz, 1H), 7.10 (dd, J = 8.0, 2.0 Hz, 1H), 6.95 (ddd, J = 8.0, 4.5, 2.0 Hz, 1H), 5.24 (br s, 1H). ¹³C NMR (CDCl₃) δ 151.3 (d, J = 239.7 Hz), 145.1, 143.5 (d, J = 16.0 Hz), 134.8, 133.2 (d, J = 3.9 Hz), 131.5, 128.8, 128.3, 127.7, 127.1, 126.6, 122.6 (d, J = 6.7 Hz), 119.22, 119.20, 118.7, 115.9 (d, J = 18.2 Hz), 109.8. ¹⁹F NMR (CDCl₃) δ 22.1. Mp. 167.8–168.5 °C. TLC: R_f 0.10 (CHCl₃). IR (KBr): 3287, 2241, 1610, 1515, 1328, 1280, 1198, 1111, 823 cm⁻¹. HRMS Calcd for C₁₇H₁₀FNONa: [M+Na]⁺, 286.0639. Found: m/z 286.0640.

1-(4-Chloro-3-hydroxyphenyl)-2-naphthonitrile (1g).

White solid; 88% yield (0.25 g).

¹H NMR (CDCl₃) δ 7.94 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.71 (dd, J = 8.5, 1.0 Hz, 1H), 7.69 (dd, J = 8.5, 1.0 Hz, 1H), 7.65 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.53 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.5 (d, J = 8.5 Hz, 1H), 7.12 (d, J = 2.0 Hz, 1H), 6.98 (d, J = 8.5, 2.0 Hz, 1H), 5.77 (br s, 1H). ¹³C NMR (CDCl₃) δ 151.4, 144.8, 136.8, 134.8, 131.3, 129.3, 128.9, 128.8, 128.3, 127.8, 127.0, 126.6, 123.0, 120.7, 118.6, 118.0, 106.6. Mp.

150.2–150.8 °C. TLC: R_f 0.20 (CHCl₃). IR (KBr): 3338, 2228, 1595, 1414, 1297, 1148, 1057, 869, 826 cm⁻¹. HRMS Calcd for $C_{17}H_{10}CINONa$: [M+Na]⁺, 302.0343. Found: m/z 302.0346.

1-(3-Hydroxy-4-methylphenyl)-2-naphthonitrile (1h).

White solid; 95% yield (0.25 g).

¹H NMR (CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.78 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.68 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.63 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.51 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 6.94 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.87 (d, *J* = 1.5 Hz, 1H), 5.01 (br s, 1H), 2.37 (s, 3H). ¹³C NMR (CDCl₃) δ 153.8, 146.1, 135.2, 134.9, 131.6, 131.2, 128.7, 128.4, 128.2, 127.5, 127.4, 126.7, 124.7, 122.4, 119.0, 116.5, 109.5, 15.8. Mp. 149.6–150.5 °C. TLC: R_f 0.10 (CHCl₃). IR (KBr): 3405, 2925, 2233, 1510, 1419, 1337, 1237, 1181, 1108, 820 cm⁻¹. HRMS Calcd for C₁₈H₁₃NONa: [M+Na]⁺, 282.0889. Found: *m/z* 282.0892.

General procedure for preparation of substrates 1e and 1i

General procedure for preparation of 17

In a 100 mL round-bottom flask, **14** (0.58 g, 2.5 mmol) and boronic acid **7** (2.5 mmol) were dissolved in toluene (18 mL) and EtOH (2.5 mL). To the mixture were sequentially added PdCl₂(dppf)·CH₂Cl₂ (0.061 g, 0.075 mmol), Na₂CO₃ (1.3 g, 13 mmol), and H₂O

(12 mL). The mixture was refluxd in an oil bath maintained at 120 °C for 24 h. After the mixture was cooled to ambient temperature, H₂O was added, and the aqueous phase was extracted with EtOAc (20 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane/CHCl₃ (v/v = 3:2 or 1:1) as an eluent gave the corresponding product **17**.

1-(3-((*tert*-Butyldimethylsilyl)oxy)-5-methoxyphenyl)-2-naphthonitrile (17e).

Colorless oil; 51% yield (0.69 g).

¹H NMR (CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.5, 1.0 Hz, 1H), 7.68 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.63 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.51 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 6.59 (dd, *J* = 2.5, 1.5 Hz, 1H), 6.56 (dd, *J* = 2.5, 2.5 Hz, 1H), 6.52 (dd, *J* = 2.5, 1.5 Hz, 1H), 3.82 (s, 3H), 0.99 (s, 9H), 0.24 (s, 6H). ¹³C NMR (CDCl₃) δ 160.6, 156.8, 146.1, 138.1, 134.7, 131.5, 128.6, 128.4, 128.1, 127.5, 127.4, 126.6, 118.6, 114.5, 109.5, 108.8, 106.7, 55.4, 25.6, 18.1, -4.4, -4.5. TLC: R_f 0.23 (hexane/CHCl₃ = 3:2). IR (KBr): 2931, 2857, 2226, 1591, 1432, 1389, 1339, 1254, 1197, 1160, 1060, 985, 839 cm⁻¹. HRMS Calcd for C₂₄H₂₇NO₂SiNa: [M+Na]⁺, 412.1703. Found: *m/z* 412.1713.

1-(3-((tert-Butyldimethylsilyl)oxy)-4-methoxyphenyl)-2-naphthonitrile (17i).

White solid; 80% yield (0.93 g).

¹H NMR (CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.78 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.67 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.62 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.51 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.02 (m, 2H), 6.94 (dd, *J* = 2.0, 1.0 Hz, 1H), 3.91 (s, 3H), 1.00 (s, 9H), 0.20 (m, 6H). ¹³C NMR (CDCl₃) δ 151.5, 146.1, 144.8, 134.9, 131.9, 128.8, 128.6, 128.2, 127.5, 127.4, 126.8, 123.6, 122.8, 119.0, 111.9, 109.8, 55.5, 25.7, 18.4, –

4.58, -4.63. Mp. 118.8–119.7 °C. TLC: $R_f 0.37$ (hexane/CHCl₃ = 1:1). IR (KBr): 2941, 2223, 1523, 1437, 1292, 1269, 1135, 1029, 951, 850 cm⁻¹. HRMS Calcd for $C_{24}H_{27}NO_2SiNa$: [M+Na]⁺, 412.1703. Found: *m/z* 412.1709.

General procedure for preparation of 1

In a 20 mL round-bottom flask, to a solution of **17** (1.5 mmol) in THF (3.0 mL) was added a solution of tetrabutylammonium fluoride (1.8 mL, ca. 1.0 M in THF, 1.8 mmol) at ambient temperature. After the mixture was stirred for 24 h, H₂O was added, and the aqueous phase was extracted with EtOAc (10 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using CHCl₃ or hexane/CHCl₃ (v/v = 1:5) as an eluent gave the corresponding 1-(3-hydroxymethoxyphenyl)-2-naphthonitrile **1**.

1-(3-Hydroxy-5-methoxyphenyl)-2-naphthonitrile (1e).

White solid; 73% yield (0.41 g).

¹H NMR (CDCl₃) δ 7.922 (d, *J* = 8.0 Hz, 1H), 7.916 (d, *J* = 8.0 Hz, 1H), 7.79 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.68 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.63 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.52 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 6.57 (dd, *J* = 2.0, 2.0 Hz, 1H), 6.56 (dd, *J* = 2.0, 1.5 Hz, 1H), 6.51 (dd, *J* = 2.0, 1.5 Hz, 1H), 5.24 (br s, 1H), 3.83 (s, 3H). ¹³C NMR (CDCl₃) δ 160.8, 156.9, 146.1, 138.3, 134.8, 131.4, 128.8, 128.5, 128.1, 127.6, 127.4, 126.6, 118.8, 109.7, 109.3, 108.4, 102.0, 55.5. Mp. 153.8–154.2 °C. TLC: R_f 0.07 (CHCl₃). IR (KBr): 3428, 2226, 1598, 1461, 1340, 1218, 1157, 850, 822 cm⁻¹. HRMS Calcd for C₁₈H₁₃NO₂Na: [M+Na]⁺, 298.0838. Found: *m/z* 298.0841.

1-(3-Hydroxy-4-methoxyphenyl)-2-naphthonitrile (1i).

White solid; 48% yield (0.32 g).

¹H NMR (CDCl₃) δ 7.92 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.5 Hz, 1H), 7.80 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.67 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.62 (ddd, *J* = 8.0, 6.5, 1.0 Hz, 1H), 7.51 (ddd, *J* = 8.0, 6.5, 1.0 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 7.02 (d, *J* = 2.0 Hz, 1H), 6.97 (dd, *J* = 8.0, 2.0 Hz, 1H), 5.76 (br s, 1H), 4.00 (s, 3H). ¹³C NMR (CDCl₃) δ 147.0, 146.1, 145.4, 134.8, 131.7, 129.3, 128.6, 128.2, 128.1, 127.4, 126.6, 122.0, 119.0, 116.3, 110.6, 109.9, 109.7, 55.9. Mp. 180.5–181.1 °C. TLC: R_f 0.12 (hexane/CHCl₃ = 1:5). IR (KBr): 3382, 2956, 2233, 1517, 1441, 1388, 1281, 1131, 1027, 876, 824 cm⁻¹. HRMS Calcd for C₁₈H₁₃NO₂Na: [M+Na]⁺, 298.0838. Found: *m/z* 298.0842.

Procedure for preparation of boronic acid 15c

Procedure for preparation of 19

In a 100 mL round-bottom flask were sequentially placed 18 (5.3 g, 24 mmol), K₂CO₃

(10 g, 72 mmol), acetone (40 mL), and dimethyl sulfate (5.8 mL, 60 mmol). After being refluxed in an oil bath maintained at 80 °C for 16 h, the mixture was concentrated in vacuo. After H₂O was added, the aqueous phase was extracted with CH₂Cl₂ (30 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to quantitatively afford methyl 3-bromo-5-methoxybenzoate (**19**), which was used for the next step without further purification.

Methyl 3-bromo-5-methoxybenzoate (19): CAS RN [56709-70-7].

Colorless oil.

¹H NMR (CDCl₃) δ 7.74 (dd, J = 2.0, 1.0 Hz, 1H), 7.47 (dd, J = 2.0, 1.0 Hz, 1H), 7.22 (dd, J = 2.0, 2.0 Hz, 1H), 3.90 (s, 3H), 3.82 (s, 3H). ¹³C NMR (CDCl₃) δ 165.6, 160.1, 132.6, 124.8, 122.6, 122.1, 113.4, 55.7, 52.4.

Procedure for preparation of 20

In a 50 mL round-bottom flask, a solution of **19** in THF (10 mL) was added dropwise to a stirred suspension of lithium aluminum hydride (1.9 g, 50 mmol) in THF (15 mL) at 0 °C. The mixture was allowed to warm to ambient temperature and stirred for 5 h. To the mixture were sequentially added H₂O (1.9 mL), 15% aqueous NaOH (1.9 mL), and H₂O (5.9 mL). The resulting mixture was filtered through a Celite pad, and the Celite pad was washed with CH₂Cl₂. The combined filtrate was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using CHCl₃ as an eluent gave (3-bromo-5-methoxyphenyl)methanol (**20**) in 73% yield from **18**.

(3-Bromo-5-methoxyphenyl)methanol (20): CAS RN [262450-64-6].

HOOMe

Colorless oil; 73% yield (2 steps, 3.9 g).

¹H NMR (CDCl₃) δ 7.10 (dd, J = 2.0, 2.0 Hz, 1H), 6.97 (dd, J = 2.0, 2.0 Hz, 1H), 6.85 (dd, J = 2.0, 2.0 Hz, 1H), 4.65 (s, 2H), 3.80 (s, 3H), 1.76 (br s, 1H). ¹³C NMR (CDCl₃)

Procedure for preparation of 21

In a 50 mL round-bottom flask were sequentially placed **20** (3.9 g, 18 mmol), CH₂Cl₂ (36 mL), and Et₃N (5.0 mL, 36 mmol). Subsequently, methanesulfonyl chloride (1.5 mL, 20 mmol) was added, and the mixture was stirred at ambient temperature for 2 h. The reaction was quenched with saturated aqueous NH₄Cl (10 mL), and the aqueous phase was extracted with CH₂Cl₂ (10 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to afford 3-bromo-5-methoxybenzyl methanesulfonate (**21**), which was used for the next step without further purification. The characterization data were difficult to collect because it was of low purity.

Procedure for preparation of 22

In a 50 mL round-bottom flask, a solution of **21** in THF (4.0 mL) was added dropwise to a stirred suspension of lithium aluminum hydride (0.76 g, 20 mmol) in THF (6.0 mL) at 0 °C. The mixture was allowed to warm to ambient temperature and stirred for 2 h. To the mixture were sequentially added H₂O (0.80 mL), 15% aqueous NaOH (0.80 mL), and H₂O (2.2 mL). The resulting mixture was filtered through a Celite pad, and the Celite pad was washed with CH₂Cl₂. The combined filtrate was washed with brine, dried over Na₂SO₄, and concentrated in vacuo to afford 1-bromo-3-methoxy-5methylbenzene (**22**), which was used for the next step without further purification.

1-Bromo-3-methoxy-5-methylbenzene (22): CAS RN [29578-83-4].

Me Colorless oil; 61% yield (2 steps, 2.2 g). ¹H NMR (CDCl₃) δ 6.93 (s, 1H), 6.87 (s, 1H), 6.65 (s, 1H), 3.77 (s, 3H), 2.30 (s, 3H). ¹³C NMR (CDCl₃) δ 160.1, 141.0, 124.5, 122.4, 114.0, 113.9, 55.3, 21.3.

Procedure for preparation of 15c

In a 50 mL round-bottom flask, to a solution of **22** (1.0 g, 5.0 mmol) in THF (20 mL) was added *n*-butyllithium (3.8 mL, ca. 1.6 M in *n*-hexane, 6.0 mmol) at -78 °C, and the resulting mixture was stirred at the same temperature for 45 min. Subsequently, a solution of triisopropyl borate (1.7 mL, 7.5 mmol) was added, and the mixture was stirred

at -30 °C for 75 min. The reaction was guenched with 2.5 M agueous HCl (10 mL), and the aqueous phase was extracted with EtOAc (10 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane/EtOAc (v/v = 3:1) as an eluent gave (3-methoxy-5-methylphenyl)boronic acid (15c). The characterization data were difficult to collect because it was of low purity.

Procedure for preparation of boronic acid 15d

Procedure for preparation of 19

In a 30 mL round-bottom flask were sequentially placed 18 (3.1 g, 14 mmol), K₂CO₃ (5.7 g, 42 mmol), acetone (21 mL), and dimethyl sulfate (3.4 mL, 35 mmol). After being refluxed in an oil bath maintained at 80 °C for 24 h, the mixture was concentrated in After H₂O was added, the aqueous phase was extracted with CH₂Cl₂ (20 mL \times vacuo. The combined organic layers were washed with brine, dried over Na₂SO₄, and 3). concentrated in vacuo to quantitatively afford methyl 3-bromo-5-methoxybenzoate (19), which was used for the next step without further purification. The characterization results of 19 are as described above.

Procedure for preparation of 23

In a 50 mL round-bottom flask, a solution of iodomethane (2.6 mL, 42 mmol) in Et₂O (11 mL) was added dropwise to a stirred suspension of magnesium turnings (1.0 g, 42 mmol) in Et₂O (10 mL) at 0 °C. The mixture was allowed to warm to ambient temperature and stirred for 1 h. To the resulting mixture was added a solution of **19** (3.3 g, 13 mmol) in Et₂O (5.0 mL), and the mixture was stirred at ambient temperature for 15

h. The reaction was quenched with saturated aqueous NH_4Cl (50 mL), and the aqueous phase was extracted with Et_2O (30 mL × 3). The combined organic layers were washed with brine, dried over Na_2SO_4 , and concentrated in vacuo to quantitatively afford 2-(3-bromo-5-methoxyphenyl)propan-2-ol (**23**), which was used for the next step without further purification.

2-(3-Bromo-5-methoxyphenyl)propan-2-ol (23): CAS RN [1204344-31-9].

Colorless oil; 96% yield (3.3 g).

¹H NMR (CDCl₃) δ 7.19 (dd, J = 3.0, 2.0 Hz, 1H), 6.97 (dd, J = 3.5, 2.0 Hz, 1H), 6.92 (dd, J = 3.5, 3.0 Hz, 1H), 3.79 (s, 3H), 1.88 (br s, 1H), 1.54 (s, 3H), 1.53 (s, 3H). ¹³C NMR (CDCl₃) δ 160.2, 152.5, 122.6, 120.2, 114.9, 109.8, 72.3, 55.5, 31.61, 31.57.

Procedure for preparation of 24

In a 200 mL round-bottom flask were sequentially placed **23** (3.3 g, 13 mmol), CH₂Cl₂ (90 mL), and trifluoroacetic acid (10 mL, 0.14 mol). Subsequently, triethylsilane (6.7 mL, 42 mmol) was added, and the mixture was stirred at ambient temperature for 19 h. It was made alkaline with aqueous NH₃, and the aqueous phase was extracted with CH₂Cl₂ (30 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane as an eluent gave 1-bromo-3-isopropyl-5-methoxybenzene (**24**) in 41% yield from **18**.

1-Bromo-3-isopropyl-5-methoxybenzene (24): CAS RN [1204344-29-5].

Colorless oil; 42% yield (1.3 g).

¹H NMR (CDCl₃) δ 6.96 (dd, J = 2.0, 1.5 Hz, 1H), 6.87 (dd, J = 2.0, 2.0 Hz, 1H), 6.69 (dd, J = 2.0, 1.5 Hz, 1H), 3.78 (s, 3H), 2.83 (sept, J = 7.0 Hz, 1H), 1.22 (d, J = 7.0 Hz,

6H). ¹³C NMR (CDCl₃) δ 160.2, 152.1, 122.5, 122.1, 114.0, 111.7, 55.4, 34.1, 23.7.

Procedure for preparation of 15d

In a 50 mL round-bottom flask, to a solution of **24** (1.1 g, 5.0 mmol) in THF (20 mL) was added *n*-butyllithium (3.8 mL, ca. 1.6 M in *n*-hexane, 6.0 mmol) at -78 °C, and the resulting mixture was stirred at the same temperature for 45 min. Subsequently, a solution of triisopropyl borate (1.7 mL, 7.5 mmol) was added, and the mixture was stirred at -30 °C for 75 min. The reaction was quenched with 2.5 M aqueous HCl (10 mL), and the aqueous phase was extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane/EtOAc (v/v = 3:1) as an eluent gave (3-isopropyl-5-methoxyphenyl)boronic acid (**15d**). The characterization data were difficult to collect because it was of low purity.

Procedure for preparation of boronic acid 15e

Procedure for preparation of 26

In a 200 mL round-bottom flask were sequentially added **25** (5.2 g, 28 mmol), K₂CO₃ (5.7 g, 41 mmol), acetone (80 mL), and iodomethane (1.8 mL, 29 mmol). After being refluxed in an oil bath maintained at 80 °C for 18 h, the mixture was concentrated in vacuo. After 1.0 M aqueous HCl was added until the pH of the mixture became 4, the aqueous phase was extracted with CH₂Cl₂ (30 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane/EtOAc (v/v/ = 5:1) as an eluent gave 3-bromo-5-methoxyphenol (**26**) in 36% yield.

3-Bromo-5-methoxyphenol (26): CAS RN [855400-66-7].

White solid; 36% yield (2.0 g).

¹H NMR (CDCl₃) δ 6.65 (dd, J = 2.0, 2.0 Hz, 1H), 6.61 (dd, J = 2.0, 2.0 Hz, 1H), 6.30 (dd, J = 2.0, 2.0 Hz, 1H), 5.01 (br s, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃) δ 161.3, 157.1, 122.9, 111.4, 109.9, 100.8, 55.5.

Procedure for preparation of 27

In a 100 mL round-bottom flask were sequentially placed **26** (2.0 g, 10 mmol), DMF (60 mL), imidazole (2.7 g, 40 mmol), and *tert*-butyldimethylchlorosilane (3.1 g, 20 mmol), and the mixture was stirred at ambient temperature for 36 h. The reaction was quenched with H₂O (30 mL), and the aqueous phase was extracted with EtOAc (30 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to quantitatively afford (3-bromo-5-methoxyphenoxy)(*tert*-butyl)dimethylsilane (**27**), which was used for the next step without further purification.

(**3-Bromo-5-methoxyphenoxy**)(*tert*-butyl)dimethylsilane (**27**): CAS RN [1839511-43-1].

Colorless oil; 99% yield (3.2 g).

¹H NMR (CDCl₃) δ 6.68 (dd, J = 2.0, 2.0 Hz, 1H), 6.62 (dd, J = 2.0, 2.0 Hz, 1H), 6.32 (dd, J = 2.0, 2.0 Hz, 1H), 3.75 (s, 3H), 0.98 (s, 9H), 0.20 (s, 6H). ¹³C NMR (CDCl₃) δ 161.0, 157.3, 122.5, 116.1, 110.3, 105.5, 55.4, 25.6, 18.1, -4.5.

Procedure for preparation of 15e

In a 50 mL round-bottom flask, to a solution of **27** (1.6 g, 5.0 mmol) in THF (20 mL) was added *n*-butyllithium (3.8 mL, ca. 1.6 M in *n*-hexane, 6.0 mmol) at -78 °C, and the resulting mixture was stirred at the same temperature for 45 min. Subsequently, a solution of triisopropyl borate (1.7 mL, 7.5 mmol) was added, and the mixture was stirred at -30 °C for 75 min. The reaction was quenched with 2.5 M aqueous HCl (10 mL), and the aqueous phase was extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo.

Purification by flush silica gel column chromatography using hexane/EtOAc (v/v = 3:1) as an eluent gave (3-((*tert*-butyldimethylsilyl)oxy)-5-methoxyphenyl)boronic acid (**15e**). The characterization data were difficult to collect because it was of low purity.

Procedure for preparation of boronic acid 15i

Procedure for preparation of 29

In a 100 mL round-bottom flask were sequentially placed **28** (2.0 g, 10 mmol), DMF (60 mL), imidazole (2.7 g, 40 mmol) and *tert*-butyldimethylchlorosilane (3.1 g, 20 mmol), and the mixture was stirred at ambient temperature for 18 h. The reaction was quenched with H₂O (30 mL), and the aqueous phase was extracted with EtOAc (30 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo to quantitatively afford (5-bromo-2-methoxyphenoxy)(*tert*-butyl)dimethylsilane (**29**), which was used for the next step without further purification.

(5-Bromo-2-methoxyphenoxy)(*tert*-butyl)dimethylsilane (29): CAS RN [177329-71-4].

Colorless oil; 99% yield (3.2 g).

¹H NMR (CDCl₃) δ 7.02 (dd, J = 8.0, 2.0 Hz, 1H), 6.97 (d, J = 2.0 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 3.78 (s, 3H), 0.98 (s, 9H), 0.15 (s, 6H). ¹³C NMR (CDCl₃) δ 150.4, 145.9, 124.4, 124.0, 113.1, 112.2, 55.5, 25.6, 18.4, -4.7.

Procedure for preparation of 15i

In a 50 mL round-bottom flask, to a solution of **29** (1.6 g, 5.0 mmol) in THF (20 mL) was added *n*-butyllithium (3.8 mL, ca. 1.6 M in *n*-hexane, 6.0 mmol) at -78 °C, and the

resulting mixture was stirred at the same temperature for 45 min. Subsequently, a solution of triisopropyl borate (1.7 mL, 7.5 mmol) was added, and the mixture was stirred at -30 °C for 75 min. The reaction was quenched with 2.5 M aqueous HCl (10 mL), and the aqueous phase was extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by flush silica gel column chromatography using hexane/EtOAc (v/v = 3:1) as an eluent gave (3-((*tert*-butyldimethylsilyl)oxy)-4-methoxyphenyl)boronic acid (**15i**). The characterization data were difficult to collect because it was of low purity.

Table S1. Screening of Catalysts^a

entry	catalyst	yield (%) ^b	ee (%)
1	3 a	82	20
2	3c	83	41
3	3 g	68	47
4	3h	30	13
5	3i	29	47
6	3ј	71	39
7	3k	75	25
8	31	21	50
9	3m	95	3
10	3 n	35	12
11	30	44	15
12	3 p	<5	
13	3 q	<5	

^a Reactions were run using **1a** (0.10 mmol), the catalyst (0.010 mmol), and **4a** (0.30 mmol) in CH_2Cl_2 (10 mL) with **4a** added in 1 portion. ^b Isolated yields.

(Table S1)

CF₃

3n

ŌМе

|| N

A reaction of **1a** using 1.5 equiv of **4a** was carried out; a mixture of *ortho*monobrominated products **1a**-Br and **1a**-Br' were obtained along with **2a**. These results indicate that **1a**-Br and **1a**-Br' would be the reaction intermediates; the low regioselectivity of the first bromination might be one of the reasons for the moderate enantioselectivity. Indeed, the *ortho*-monobrominated product **1a**-Br was obtained with 75% *ee*; it shows that the bromination at one of the *ortho*-positions introduces a rotational barrier high enough to set the chiral axis, which is consistent with the rotational barriers calculated at the M06-2X/6-311++G(2d,3p)//B3LYP/6-31+G(d,p) level of theory (Figure 4).

Scheme S2. Control Experiments

Scheme S3. Reaction of 1h with 0.5 Equiv of 4a.

Scheme S4. Reaction of 1a-Br with 1.0 Equiv of 4a.

Scheme S5. Reaction of Deuterated Substrate 1a-d.

84% 52% ee (reaction of **1a**: 99%, 51% ee)

Characterization Data of Products

1-(2,4,6-Tribromo-3-methoxyphenyl)-2-naphthonitrile (5a).

Yield of **2a**: 99% (47.7 mg), 51% *ee*, white solid. $[\alpha]_D^{20}$ –5.5 (*c* 0.93, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.03 (d, *J* = 8.5 Hz, 1H), 7.99 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.75 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.67 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.56 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.37 (dd, *J* = 8.5, 1.0 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (CDCl₃) δ 154.6, 144.0, 138.7, 136.0, 134.8, 130.1, 129.8, 129.1, 128.6, 128.4, 126.5, 125.5, 121.2, 119.5, 119.3, 117.4, 110.2, 60.9. Mp. 130.5–131.0 °C. TLC: R_f 0.33 (hexane/CHCl₃ = 3:2). IR (KBr): 2941, 2232, 1450, 1382, 1344, 1050, 982, 829 cm⁻¹. HRMS Calcd for C₁₈H₁₀Br₃NONa: [M+Na]⁺, 517.8184. Found: *m*/*z* 517.8184. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 98.5/1.5, flow rate = 0.5 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 16.4 min, *t_{major}* = 18.2 min.

1-(2,4,6-Tribromo-3-methoxy-5-(trifluoromethyl)phenyl)-2-naphthonitrile (5b).

Yield of **2b**: 84% (46.2 mg), 15% *ee*, white solid. $[\alpha]_D^{20}$ –2.3 (*c* 0.22, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.76 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.69 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.58 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.32 (dd, *J* = 8.0, 1.0 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (CDCl₃) δ 155.8, 144.7, 141.5, 134.8, 130.7 (q, *J* = 30.7 Hz), 130.0, 129.8, 129.3, 128.8, 128.7, 126.5, 125.1, 124.8, 121.9 (q, *J* = 277.2 Hz), 120.4, 118.6, 117.2, 110.1, 60.9. ¹⁹F NMR (CDCl₃) δ 106.5. Mp. 156.0–156.6 °C. TLC: R_f 0.25 (hexane/CHCl₃ = 2:1). IR (KBr): 2941, 2227, 1543, 1356, 1309, 1137, 1063, 991, 823 cm⁻¹. HRMS Calcd for C₁₉H₉Br₃F₃NONa: [M+Na]⁺, 585.8058. Found: *m*/*z* 585.8064. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 98.5/1.5, flow rate = 0.5 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 16.6 min, *t_{major}* = 15.2 min.

(S)-1-(2,4,6-Tribromo-3-methoxy-5-methylphenyl)-2-naphthonitrile (5c).

Yield of **2c**: 83% (41.2 mg), 73% *ee*, white solid. $[\alpha]_D^{20}$ –0.5 (*c* 1.03, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.01 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.74 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.67 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.54 (ddd, *J* = 8.5, 7.0, 1.5 Hz, 1H), 7.37 (dd, *J* = 8.5, 1.0 Hz, 1H), 3.95 (s, 3H), 2.71 (s, 3H). ¹³C NMR (CDCl₃) δ 154.2, 145.4, 139.6, 138.2, 134.9, 130.1, 129.5, 129.1, 128.6, 128.3, 126.5, 125.6, 122.4, 121.7, 117.6, 117.5, 110.1, 60.6, 25.2. Mp. 176.0–176.4 °C. TLC: R_f 0.37 (hexane/CHCl₃ = 3:2). IR (KBr): 2941, 2853, 2234, 1461, 1352, 1074, 1031, 943, 868, 820 cm⁻¹. HRMS Calcd for C₁₉H₁₂Br₃NONa: [M+Na]⁺, 531.8341. Found: *m*/*z* 531.8343. HPLC (Daicel Chiralpak IE, hexane/*i*-PrOH = 98.0/2.0, flow rate = 1.5 mL/min, λ = 254 nm, 40 °C): *t*_{minor} = 10.2 min, *t*_{major} = 8.0 min.

1-(2,4,6-Tribromo-3-isopropyl-5-methoxyphenyl)-2-naphthonitrile (5d).

Rotamers resulting from the isopropyl group were ovserved in the NMR analysis.

Yield of **2d**: 93% (48.8 mg), 60% *ee*, white solid. $[\alpha]_D^{20} 0.0 (c \ 0.63, CH_2Cl_2)$. ¹H NMR (CDCl₃) δ 8.00 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.73 (dd, J = 8.5, 1.0 Hz, 1H), 7.66 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.55 (ddd, J = 8.5, 7.0, 1.0 Hz, 1H), 7.37 (dd, J = 8.5, 1.0 Hz, 1H), 4.10 (m, 1H), 3.95 (s, 3H), 1.50 (m, 6H). ¹³C NMR (CDCl₃) δ 154.9, 154.2, 146.7, 146.5, 146.1, 145.8, 139.7, 138.8, 134.8 (2C), 130.3, 130.1, 129.8, 129.4, 129.0, 128.6, 128.3, 126.6, 125.7, 124.3, 123.1, 120.5, 119.4, 117.9, 117.8, 117.5 (2C), 110.3, 110.0, 60.7, 60.5, 37.0, 36.7, 19.43, 19.39, 19.3, 19.2. Mp. 65.6–66.6 °C. TLC: R_f 0.20 (hexane/CHCl₃ = 2:1). IR (KBr): 2933, 2853, 2228, 1444, 1353, 1314, 1063, 1006, 939, 820 cm⁻¹. HRMS Calcd for C₂₁H₁₆Br₃NONa: [M+Na]⁺, 559.8654. Found: *m*/*z* 559.8656. HPLC (Daicel Chiralpak IE, hexane/*i*-PrOH = 98.0/2.0, flow rate = 1.0
mL/min, $\lambda = 254$ nm, 40 °C): $t_{minor} = 11.1$ min, $t_{major} = 10.0$ min.

2,4,6-Tribromo-3-(2-cyanonaphthalen-1-yl)-5-methoxyphenyl acetate (6e).

Yield of **2e**: 99% (53.5 mg), 19% *ee*, white solid. $[\alpha]_D^{20}$ –0.7 (*c* 0.92, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.03 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.74 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.68 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.67 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.40 (dd, *J* = 8.5, 1.0 Hz, 1H), 3.99 (s, 3H), 2.42 (s, 3H). ¹³C NMR (CDCl₃) δ 166.8, 155.3, 147.2, 143.8, 138.6, 134.8, 130.0, 129.9, 129.2, 128.61, 128.58, 126.4, 125.6, 117.9, 117.3, 115.5, 115.2, 110.2, 61.0, 20.5. Mp. 146.6–147.2 °C. TLC: R_f 0.30 (hexane/CHCl₃ = 1:1). IR (KBr): 2941, 2227, 1782, 1365, 1182, 1077, 960, 867, 824 cm⁻¹. HRMS Calcd for C₂₀H₁₂Br₃NO₃Na: [M+Na]⁺, 575.8239. Found: *m/z* 575.8239. HPLC (Daicel Chiralpak IE, hexane/*i*-PrOH = 98.0/2.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 25.6 min, *t_{major}* = 30.1 min.

1-(2,6-Dibromo-4-fluoro-3-methoxyphenyl)-2-naphthonitrile (5f).

Yield of **2f**: 96% (40.5 mg), 16% *ee*, white solid. $[\alpha]_D^{20}$ –4.7 (*c* 0.88, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.02 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.74 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.67 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.57 (s, 1H), 7.55 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.36 (dd, *J* = 8.5, 1.0 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (CDCl₃) δ 155.4 (d, *J* = 256.1 Hz), 145.5 (d, *J* = 12.6 Hz), 144.1, 134.8, 134.7 (d, *J* = 4.8 Hz), 130.4, 129.7, 129.1, 128.6, 128.3, 126.5, 125.6, 120.9 (d, *J* = 23.0 Hz), 120.3 (q, *J* = 3.8 Hz), 117.5, 117.3 (d, *J* = 9.7 Hz), 110.6, 61.7 (d, *J* = 4.9 Hz). ¹⁹F NMR (CDCl₃) δ 37.8. Mp. 182.8–183.8 °C. TLC: R_f 0.30 (hexane/CHCl₃ = 3:2). IR (KBr): 3081, 2224, 1561, 1478, 1355, 1331, 1292, 1199, 1054, 981, 936, 875, 849, 821 cm⁻¹. HRMS Calcd for C₁₈H₁₀Br₂FNONa:

 $[M+Na]^+$, 457.8985. Found: *m/z* 457.8989. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 98.5/1.5, flow rate = 0.5 mL/min, λ = 254 nm, 40 °C): t_{minor} = 17.0 min, t_{major} = 20.3 min.

1-(2,6-Dibromo-4-chloro-3-methoxyphenyl)-2-naphthonitrile (5g).

Yield of **2g**: 96% (42.1 mg), 36% *ee*, white solid. $[\alpha]_D^{20}$ –4.4 (*c* 1.04, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.03 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.83 (s, 1H), 7.75 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.68 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.56 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.37 (dd, *J* = 8.0, 1.0 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (CDCl₃) δ 153.6, 144.0, 138.0, 134.8, 133.2, 130.6, 130.1, 129.8, 129.1, 128.6, 128.4, 126.5, 125.5, 121.5, 118.9, 117.4, 110.3, 60.9. Mp. 149.6–150.0 °C. TLC: R_f 0.37 (hexane/CHCl₃ = 3:2). IR (KBr): 3072, 2933, 2225, 1448, 1382, 1346, 1254, 1053, 985, 979, 867, 822 cm⁻¹. HRMS Calcd for C₁₈H₁₀Br₂ClNONa: [M+Na]⁺, 473.8689. Found: *m/z* 473.8691. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 98.5/1.5, flow rate = 0.5 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 16.1 min, *t_{major}* = 18.3 min.

2,4-Dibromo-3-(2-cyanonaphthalen-1-yl)-6-methylphenyl acetate (6h).

Yield of **2h**: 86% (38.5 mg), 84% *ee*, white solid. $[\alpha]_D^{20}$ –8.2 (*c* 0.58, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.01 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.73 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.67 (d, *J* = 0.5 Hz, 1H), 7.66 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.55 (ddd, *J* = 8.5, 7.0, 1.0 Hz, 1H), 7.43 (dd, *J* = 8.5, 1.0 Hz, 1H), 2.39 (s, 3H), 2.34 (d, *J* = 0.5 Hz, 3H). ¹³C NMR (CDCl₃) δ 167.8, 147.2, 144.3, 136.6, 135.1, 134.8, 134.1, 130.4, 129.6, 129.1, 128.5, 128.4, 126.5, 125.9, 121.0, 119.6, 117.5, 110.5, 20.5, 16.9. Mp. 210.0–211.0 °C. TLC: R_f 0.15 (hexane/CHCl₃ = 1:1). IR (KBr): 2934, 2228, 1769, 1452, 1371, 1152,

1008, 888, 869, 821 cm⁻¹. HRMS Calcd for C₂₀H₁₃Br₂NO₂Na: [M+Na]⁺, 481.9185. Found: m/z 481.9177. HPLC (Daicel Chiralpak IE, hexane/*i*-PrOH = 97.0/3.0, flow rate = 1.5 mL/min, λ = 254 nm, 30 °C): t_{minor} = 16.6 min, t_{major} = 13.7 min.

1-(2,6-Dibromo-3,4-dimethoxyphenyl)-2-naphthonitrile (5i).

Yield of **2i**: 79% (34.3 mg), 38% *ee*, white solid. $[\alpha]_D^{20}$ –3.1 (*c* 0.26, CH₂Cl₂). ¹H NMR (CDCl₃) δ 8.00 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.73 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.65 (ddd, *J* = 8.0, 6.5, 1.0 Hz, 1H), 7.54 (ddd, *J* = 8.0, 6.5, 1.0 Hz, 1H), 7.41 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.30 (s, 1H), 3.98 (s, 3H), 3.93 (s, 3H). ¹³C NMR (CDCl₃) δ 154.2, 146.5, 144.8, 134.8, 130.9, 130.2, 129.4, 128.9, 128.5, 128.1, 126.5, 126.0, 120.3, 118.5, 117.8, 115.9, 111.0, 60.8, 56.3. Mp. 189.5–190.5 °C. TLC: R_f 0.18 (hexane/CHCl₃ = 1:1). IR (KBr): 2942, 2231, 1582, 1483, 1298, 1022, 981, 857, 822 cm⁻¹. HRMS Calcd for C₁₉H₁₃Br₂NO₂Na: [M+Na]⁺, 469.9185. Found: *m/z* 469.9191. HPLC (Daicel Chiralpak IE, hexane/*i*-PrOH = 98.5/1.5, flow rate = 1.5 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 35.0 min, *t_{major}* = 20.4 min.

1-(2-Bromo-3-hydroxyphenyl)-2-naphthonitrile (1a-Br).

Yield: not determined, 75% *ee*, white solid. $[\alpha]_D^{20} - 30.0 (c \ 0.54, CH_2Cl_2, 69\% ee).$ ¹H NMR (CDCl₃) δ 7.99 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.65 (dd, J = 8.5 Hz, 8.5 Hz, 1H), 7.52 (dd, J = 8.5, 8.5, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.41 (dd, J = 8.5, 7.5 Hz, 1H), 7.21 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 5.83 (br s, 1H). ¹³C NMR (CDCl₃) δ 152.9, 144.6, 138.0, 134.7, 131.1, 129.2, 129.0, 128.9, 128.3, 127.9, 126.8, 126.4, 123.3, 118.0, 116.5, 112.0, 110.1. Mp. 171.5–172.5 °C. TLC: R_f 0.45 (toluene/Et₂O = 3:1). IR (KBr): 3393, 3072, 2231, 1570, 1468, 1388, 1298, 1037, 895, 817 cm⁻¹. HRMS Calcd for C₁₇H₁₀BrNONa: [M+Na]⁺,

345.9838. Found: m/z 345.9847. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 95.0/5.0, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): t_{minor} = 16.4 min, t_{major} = 18.2 min.

2-Ethynyl-1-(2,4,6-tribromo-3-methoxyphenyl)naphthalene.

Yield of **2a**: 71% (34.1 mg), 12% *ee*, white solid. $[\alpha]_D^{20}$ –1.5 (*c* 0.46, CH₂Cl₂). ¹H NMR (CDCl₃) δ 7.96 (s, 1H), 7.91 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.54 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.46 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 7.26 (dd, *J* = 8.0, 1.0 Hz, 1H), 3.95 (s, 3H), 3.06 (s, 1H). ¹³C NMR (CDCl₃) δ 154.2, 141.7, 141.0, 135.4, 133.1, 130.3, 128.8, 128.6, 128.4, 127.4, 127.1, 124.9, 121.6, 119.8, 119.3, 118.0, 81.7, 81.3, 60.8. Mp. 163.5–164.5 °C. TLC: R_f 0.25. (hexane). IR (KBr): 3296, 2928, 1448, 1341, 1244, 1049, 983, 872, 829 cm⁻¹. HRMS Calcd for C₁₉H₁₂Br₃O: [M+H]⁺, 492.8433. Found: *m/z* 492.8428. HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 99.2/0.8, flow rate = 0.5 mL/min, λ = 254 nm, 40 °C): *t_{minor}* = 13.5 min, *t_{major}* = 14.2 min.

1-(2,6-Dibromo-3,4-dimethoxyphenyl)-2-naphthonitrile (5i)

HPLC Chromatogram Profiles

1-(2,4,6-Tribromo-3-methoxyphenyl)-2-naphthonitrile (5a).

1-(2,4,6-Tribromo-3-methoxy-5-(trifluoromethyl)phenyl)-2-naphthonitrile (5b).

(S)-1-(2,4,6-Tribromo-3-methoxy-5-methylphenyl)-2-naphthonitrile (5c).

1-(2,4,6-Tribromo-3-isopropyl-5-methoxyphenyl)-2-naphthonitrile (5d).

2,4,6-Tribromo-3-(2-cyanonaphthalen-1-yl)-5-methoxyphenyl acetate (6e).

1-(2,6-Dibromo-4-fluoro-3-methoxyphenyl)-2-naphthonitrile (5f).

1-(2,6-Dibromo-4-chloro-3-methoxyphenyl)-2-naphthonitrile (5g).

2,4-Dibromo-3-(2-cyanonaphthalen-1-yl)-6-methylphenyl acetate (6h).

1-(2,6-Dibromo-3,4-dimethoxyphenyl)-2-naphthonitrile (5i).

1-(2-Bromo-3-hydroxyphenyl)-2-naphthonitrile (1a-Br) (69% ee).

2-Ethynyl-1-(2,4,6-tribromo-3-methoxyphenyl)naphthalene.

ORTEP Drawing of 5c

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} $\mu(MoK\alpha)$

 $C_{19}H_{12}Br_3NO$ 510.02 Colorless, Prism $0.390 \times 0.120 \times 0.090 \text{ mm}$ Monoclinic Primitive a = 12.330(2) Å b = 7.9001(9) Å c = 18.630(2) Å $\beta = 96.052(7)^{\circ}$ $V = 1804.6(4) \text{ Å}^3$ P21 (#4) 4 1.877 g/cm³ 984.00 67.312 cm^{-1}

B. Intensity Measurements

Diffractometer
Radiation
Voltage, Current
Temperature
Detector Aperture
Data Images
ω Oscillation Range
Exposure Rate
Detector Swing Angle
ω Oscillation Range
Exposure Rate
Detector Swing Angle
ω Oscillation Range
Exposure Rate
Detector Swing Angle
ω Oscillation Range
Exposure Rate
Detector Swing Angle
ω Oscillation Range
Exposure Rate
Detector Swing Angle
ω Oscillation Range
Exposure Rate
Detector Swing Angle
Detector Position
Pixel Size
$2\theta_{max}$
No. of Reflections Measured

Corrections

XtaLAB mini MoK α ($\lambda = 0.71075$ Å) Graphite monochromated 50 kV, 12 mA 20.0 °C 75 mm (diameter) 1080 exposures -60.0-120.0° 64.0 sec./° 30.00° 50.00 mm 0.146 mm 55.0° Total: 13812 Unique: 7729 (R_{int} = 0.0595) Friedel pairs: 3336 Lorentz-polarization Absorption (trans. factors: 0.315-0.546)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELX97)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma w (F_0^2 - F_c^2)^2$
Least Squares Weights	$w = 1/[\sigma^2(F_0{}^2) + (0.0284{\cdot}P)^2$
	$+ 0.0000 \cdot P]$
	where $P = (Max(F_0^2, 0) + 2F_c^2)/3$
$2\theta_{max}$ cutoff	55.0°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	7729
No. Variables	433
Reflection/Parameter Ratio	17.85
Residuals: R1 (I>2.00o(I))	0.0552
Residuals: R (All reflections)	0.1033
Residuals: wR2 (All reflections)	0.1047
Goodness of Fit Indicator	1.007
Flack Parameter (Friedel pairs = 2089)	-0.020(15)
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	$0.46 \text{ e}^{-}/\text{\AA}^3$
Minimum peak in Final Diff. Map	-0.38 e ⁻ /Å ³

DFT Calculations of Rotational Barriers of 1a, 1a-Br, and 2a

A. Reference.

Gaussian 09, Revision B.01.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian, Inc., Wallingford CT, 2010.

Method of calculation:

Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller. S. J. J. Am. Chem. Soc. 2015, 137, 12369.

B. General procedure for calculation of rotational barriers.

Geometry optimizations of **1a**, **1a**-Br, and **2a** were carried out using the B3LYP hybrid functional with the 6-31+G(d,p) basis set. Potential energy surface scan for dihedral angles of rotational axes from the obtaind structures were carried out using the same level of theory. The structures of ground states (GS) and transition states (TS) were calculated from the structure with minimum and maximum energies using the same level of theory. If the calculation of TS were difficult, QST2 method was carried out using the same level of theory. As a result, two GS and two TS for each compound were given.

Single-point calculations for all GS and TS were carried out using M06-2X hybrid functional with the 6-311++G(2d,3p) basis set.

Rotational barriers for each TS, $\Delta G^{\ddagger}(1)$ and $\Delta G^{\ddagger}(2)$, are energy differences between

GS and TS. Net rotational barrires ΔG^{\ddagger} were calculated using the forrowing equation.

 $\Delta G^{\ddagger} = -RT^* ln(k_B T/k_{obs}h)$ $k_{obs} = k_1 + k_2 = k_B T/h^* \{ exp(-\Delta G^{\ddagger}(1)/RT) + exp(-\Delta G^{\ddagger}(2)/RT) \}$

 $\begin{array}{l} R \ (Gas \ Constant): \ 1.99^{*}10^{-3} \ kcal/(molK) \\ T \ (Temperature): \ 298.15 \ K \\ k_B \ (Boltzmann \ Constant): \ 1.38^{*}10^{-23} \ (m^2 \ kg)/(s^2 \ K) \\ h \ (Planck's \ Constant): \ 6.63^{*}10^{-34} \ (m^2 \ kg)/(s^2) \end{array}$

C. Energy diagrams for rotation and rotational barriers of 1a, 1a-Br, and 2a

 $\Delta G^{\ddagger}(1) = 19.3 \text{ kcal/mol}$ $\Delta G^{\ddagger}(2) = 18.6 \text{ kcal/mol}$

 $\Delta G^{\ddagger} = 18.4 \text{ kcal/mol}$

 $\Delta G^{\ddagger}(1) = 39.0 \text{ kcal/mol}$ $\Delta G^{\ddagger}(2) = 40.0 \text{ kcal/mol}$

 $\Delta G^{\ddagger} = 38.9 \text{ kcal/mol}$

 $\Delta G^{\ddagger} (1) = 52.3 \text{ kcal/mol}$ $\Delta G^{\ddagger} (2) = 52.1 \text{ kcal/mol}$

 $\Delta G^{\ddagger} = 51.7 \text{ kcal/mol}$

D. Cartesian coordinates

1a GS1

С	2.291230000000	-2.647575000000	-0.367116000000
С	1.220848000000	-1.779715000000	-0.334308000000
С	1.410295000000	-0.389340000000	-0.087215000000
С	2.750052000000	0.089698000000	0.107850000000
С	3.830002000000	-0.833080000000	0.072394000000
С	3.608818000000	-2.173465000000	-0.156676000000
Η	2.123467000000	-3.703199000000	-0.558806000000
Η	0.217481000000	-2.152954000000	-0.502867000000
С	0.315936000000	0.536652000000	-0.049579000000
С	2.971212000000	1.477249000000	0.323871000000
Η	4.838798000000	-0.459534000000	0.226660000000
Η	4.443411000000	-2.867829000000	-0.182221000000
С	1.921856000000	2.359319000000	0.344232000000
С	0.588092000000	1.889461000000	0.159464000000
Η	3.987151000000	1.832793000000	0.470936000000
Η	2.085910000000	3.418793000000	0.509063000000
С	-0.470511000000	2.858467000000	0.223373000000
Ν	-1.284609000000	3.688265000000	0.287561000000
С	-1.092324000000	0.071493000000	-0.233688000000
С	-1.716111000000	-0.685679000000	0.765817000000
С	-1.802608000000	0.402791000000	-1.398433000000
С	-3.040503000000	-1.102768000000	0.605495000000
Η	-1.191511000000	-0.945439000000	1.679525000000
С	-3.122095000000	-0.023853000000	-1.551364000000
Η	-1.325125000000	0.991639000000	-2.174629000000
С	-3.748327000000	-0.776235000000	-0.556057000000
Η	-3.671985000000	0.234477000000	-2.451313000000
Η	-4.778880000000	-1.101776000000	-0.678915000000
0	-3.589770000000	-1.833552000000	1.626517000000
Н	-4.513475000000	-2.036930000000	1.429141000000

1a TS1

С	3.127784000000	-2.171037000000	0.459985000000
С	1.874006000000	-1.608440000000	0.591284000000
С	1.570079000000	-0.299343000000	0.111044000000
С	2.695513000000	0.463110000000	-0.366658000000
С	3.961390000000	-0.159001000000	-0.544938000000
С	4.176807000000	-1.463606000000	-0.165681000000
Η	3.310865000000	-3.160233000000	0.869209000000
Η	1.143145000000	-2.155003000000	1.164700000000
С	0.250250000000	0.321281000000	0.162066000000
С	2.568282000000	1.859717000000	-0.579277000000
Η	4.772565000000	0.439073000000	-0.951289000000
Η	5.151823000000	-1.923937000000	-0.292699000000
С	1.406546000000	2.488608000000	-0.229238000000
С	0.258916000000	1.734169000000	0.155643000000
Η	3.420810000000	2.425700000000	-0.942438000000
Η	1.321958000000	3.569270000000	-0.262801000000
С	-0.829817000000	2.570626000000	0.577767000000
Ν	-1.598188000000	3.357694000000	0.962620000000
С	-1.045246000000	-0.444527000000	0.099622000000
С	-2.243700000000	0.238148000000	-0.200040000000
С	-1.148295000000	-1.854345000000	0.191463000000
С	-3.469616000000	-0.419300000000	-0.309154000000
Н	-2.274622000000	1.300238000000	-0.384512000000
С	-2.374528000000	-2.506367000000	0.078425000000
Н	-0.283504000000	-2.480022000000	0.307541000000
С	-3.554484000000	-1.803604000000	-0.154050000000
Η	-2.403448000000	-3.588771000000	0.161680000000
Н	-4.507277000000	-2.320125000000	-0.241558000000
0	-4.557201000000	0.362236000000	-0.596485000000
Н	-5.350712000000	-0.184481000000	-0.663880000000

1a GS2

С	2.291112000000	-2.647526000000	0.367861000000
С	1.220761000000	-1.779639000000	0.334820000000
С	1.410240000000	-0.389328000000	0.087371000000
С	2.750028000000	0.089616000000	-0.107735000000
С	3.829944000000	-0.833197000000	-0.072050000000
С	3.608717000000	-2.173517000000	0.157320000000
Η	2.123304000000	-3.703094000000	0.559832000000
Η	0.217389000000	-2.152813000000	0.503477000000
С	0.315907000000	0.536702000000	0.049429000000
С	2.971271000000	1.477111000000	-0.324024000000
Η	4.838756000000	-0.459711000000	-0.226381000000
Η	4.443287000000	-2.867904000000	0.183030000000
С	1.921960000000	2.359232000000	-0.344588000000
С	0.588161000000	1.889470000000	-0.159852000000
Η	3.987236000000	1.832570000000	-0.471121000000
Η	2.086075000000	3.418664000000	-0.509607000000
С	-0.470362000000	2.858554000000	-0.223974000000
Ν	-1.284364000000	3.688439000000	-0.288279000000
С	-1.092412000000	0.071738000000	0.233437000000
С	-1.715688000000	-0.686956000000	-0.765251000000
С	-1.803336000000	0.404813000000	1.397302000000
С	-3.040163000000	-1.103783000000	-0.604987000000
Η	-1.190629000000	-0.948110000000	-1.678311000000
С	-3.122906000000	-0.021570000000	1.550186000000
Η	-1.326250000000	0.994825000000	2.172870000000
С	-3.748612000000	-0.775486000000	0.555698000000
Η	-3.673271000000	0.238136000000	2.449457000000
Η	-4.779227000000	-1.100852000000	0.678498000000
0	-3.588894000000	-1.836125000000	-1.625195000000
Н	-4.512712000000	-2.039175000000	-1.428003000000

1a TS2

С	2.317654000000	-2.661218000000	0.500235000000
С	1.267432000000	-1.769788000000	0.589749000000
С	1.361136000000	-0.428650000000	0.110676000000
С	2.672504000000	-0.013129000000	-0.318655000000
С	3.720179000000	-0.964689000000	-0.452527000000
С	3.546733000000	-2.276652000000	-0.077248000000
Η	2.198956000000	-3.661943000000	0.904913000000
Η	0.392070000000	-2.091388000000	1.129635000000
С	0.266266000000	0.536561000000	0.114573000000
С	2.948846000000	1.361988000000	-0.529399000000
Н	4.681582000000	-0.618410000000	-0.822142000000
Н	4.358148000000	-2.991848000000	-0.171075000000
С	1.995534000000	2.292919000000	-0.226099000000
С	0.668699000000	1.891425000000	0.109477000000
Н	3.939504000000	1.664828000000	-0.854935000000
Н	2.217133000000	3.353957000000	-0.260511000000
С	-0.160027000000	3.003781000000	0.482705000000
Ν	-0.695916000000	3.979674000000	0.827353000000
С	-1.189020000000	0.166239000000	0.004903000000
С	-1.678936000000	-1.153358000000	0.096599000000
С	-2.146847000000	1.152315000000	-0.338744000000
С	-3.034446000000	-1.453654000000	-0.053123000000
Н	-1.042843000000	-2.005970000000	0.245240000000
С	-3.496704000000	0.848367000000	-0.484339000000
Н	-1.857974000000	2.173214000000	-0.526146000000
С	-3.967172000000	-0.454757000000	-0.326940000000
Н	-4.190477000000	1.643657000000	-0.739172000000
Н	-5.022988000000	-0.688335000000	-0.440933000000
0	-3.378114000000	-2.776924000000	0.074615000000
Н	-4.327755000000	-2.886297000000	-0.064322000000

1a-Br GS1

С	-2.587136000000	-2.472039000000	0.983841000000
С	-1.532493000000	-1.589247000000	0.904715000000
С	-1.724573000000	-0.263288000000	0.423451000000
С	-3.038825000000	0.130126000000	0.003865000000
С	-4.101795000000	-0.809248000000	0.087398000000
С	-3.883374000000	-2.082877000000	0.565478000000
Η	-2.422816000000	-3.477914000000	1.358482000000
Η	-0.542788000000	-1.897645000000	1.222799000000
С	-0.653986000000	0.682433000000	0.357062000000
С	-3.249848000000	1.452279000000	-0.474859000000
Η	-5.094014000000	-0.503667000000	-0.233692000000
Η	-4.704927000000	-2.790421000000	0.626810000000
С	-2.216845000000	2.352776000000	-0.533977000000
С	-0.910361000000	1.968336000000	-0.112889000000
Η	-4.246811000000	1.744394000000	-0.792652000000
Η	-2.375536000000	3.362472000000	-0.896933000000
С	0.138139000000	2.947482000000	-0.177309000000
Ν	0.954476000000	3.775925000000	-0.228514000000
С	0.717443000000	0.315662000000	0.826652000000
С	1.633116000000	-0.327931000000	-0.015898000000
С	1.100709000000	0.623182000000	2.140362000000
С	2.924076000000	-0.640173000000	0.436866000000
С	2.380190000000	0.309551000000	2.594941000000
Η	0.390790000000	1.118597000000	2.794407000000
С	3.291241000000	-0.318282000000	1.747415000000
Η	2.673113000000	0.559204000000	3.609789000000
Η	4.292828000000	-0.558759000000	2.096434000000
0	3.777637000000	-1.250564000000	-0.433071000000
Η	4.632067000000	-1.399239000000	-0.007019000000
Br	1.165188000000	-0.750184000000	-1.807341000000

1a-Br TS1

С	-3.842150000000	1.832423000000	0.875839000000
С	-2.532296000000	1.399179000000	0.831107000000
С	-2.144935000000	0.237305000000	0.097837000000
С	-3.211305000000	-0.542562000000	-0.463111000000
С	-4.538344000000	-0.033137000000	-0.472000000000
С	-4.853094000000	1.143889000000	0.168699000000
Η	-4.095965000000	2.701065000000	1.476165000000
Η	-1.790262000000	1.924311000000	1.419265000000
С	-0.760855000000	-0.243433000000	0.033504000000
С	-2.945972000000	-1.866717000000	-0.900177000000
Η	-5.313188000000	-0.626320000000	-0.949983000000
Η	-5.875093000000	1.510261000000	0.179018000000
С	-1.746435000000	-2.433548000000	-0.570003000000
С	-0.671422000000	-1.658637000000	-0.031065000000
Η	-3.732036000000	-2.451907000000	-1.367608000000
Η	-1.578664000000	-3.497540000000	-0.697544000000
С	0.274160000000	-2.491298000000	0.653462000000
Ν	0.785527000000	-3.295348000000	1.326294000000
С	0.356567000000	0.760781000000	-0.038548000000
С	1.767326000000	0.553831000000	-0.018574000000
С	-0.026140000000	2.107081000000	-0.303987000000
С	2.667226000000	1.642369000000	-0.015956000000
С	0.861468000000	3.169900000000	-0.348807000000
Η	-1.056786000000	2.323021000000	-0.529195000000
С	2.219771000000	2.954006000000	-0.148529000000
Η	0.489110000000	4.169206000000	-0.550640000000
Η	2.931270000000	3.775935000000	-0.158810000000
0	4.000339000000	1.362636000000	0.078205000000
Η	4.505154000000	2.186327000000	0.062518000000
Br	2.650675000000	-1.115332000000	-0.139744000000

1a-Br GS2

С	-2.587293000000	2.472115000000	0.983673000000
С	-1.532601000000	1.589396000000	0.904485000000
С	-1.724634000000	0.263396000000	0.423275000000
С	-3.038880000000	-0.130092000000	0.003744000000
С	-4.101891000000	0.809245000000	0.087266000000
С	-3.883516000000	2.082890000000	0.565301000000
Η	-2.423034000000	3.478004000000	1.358307000000
Η	-0.542907000000	1.897800000000	1.222574000000
С	-0.654031000000	-0.682319000000	0.356978000000
С	-3.249873000000	-1.452272000000	-0.474897000000
Η	-5.094105000000	0.503614000000	-0.233798000000
Η	-4.705101000000	2.790396000000	0.626643000000
С	-2.216876000000	-2.352795000000	-0.533836000000
С	-0.910412000000	-1.968314000000	-0.112745000000
Η	-4.246827000000	-1.744408000000	-0.792693000000
Η	-2.375561000000	-3.362518000000	-0.896719000000
С	0.138136000000	-2.947407000000	-0.177057000000
Ν	0.954501000000	-3.775835000000	-0.228088000000
С	0.717367000000	-0.315580000000	0.826650000000
С	1.633134000000	0.327905000000	-0.015891000000
С	1.100559000000	-0.623075000000	2.140385000000
С	2.924040000000	0.640248000000	0.437003000000
С	2.379964000000	-0.309339000000	2.595074000000
Η	0.390535000000	-1.118406000000	2.794385000000
С	3.291058000000	0.318531000000	1.747614000000
Η	2.672810000000	-0.558893000000	3.609969000000
Η	4.292571000000	0.559146000000	2.096754000000
0	3.777644000000	1.250628000000	-0.432901000000
Η	4.632229000000	1.398841000000	-0.006999000000
Br	1.165464000000	0.749916000000	-1.807449000000

1a-Br TS2

С	2.327017000000	-2.610266000000	0.619694000000
С	1.439876000000	-1.555034000000	0.701299000000
С	1.689070000000	-0.312025000000	0.064937000000
С	3.013942000000	-0.134480000000	-0.471523000000
С	3.873279000000	-1.256356000000	-0.623036000000
С	3.527812000000	-2.487561000000	-0.111554000000
Η	2.105289000000	-3.533398000000	1.147156000000
Η	0.575361000000	-1.653059000000	1.334634000000
С	0.771431000000	0.823069000000	0.083127000000
С	3.517180000000	1.174885000000	-0.688572000000
Η	4.843533000000	-1.101923000000	-1.087181000000
Η	4.202631000000	-3.333066000000	-0.205074000000
С	2.791947000000	2.242862000000	-0.233779000000
С	1.438877000000	2.072405000000	0.181997000000
Η	4.516675000000	1.307411000000	-1.091584000000
Η	3.215420000000	3.240932000000	-0.205911000000
С	0.862428000000	3.251332000000	0.766900000000
Ν	0.531133000000	4.230144000000	1.306458000000
С	-0.730824000000	0.835733000000	-0.111215000000
С	-1.732219000000	-0.182405000000	-0.021333000000
С	-1.234169000000	2.092968000000	-0.548687000000
С	-3.104382000000	0.141292000000	-0.112232000000
С	-2.579632000000	2.402870000000	-0.665288000000
Н	-0.540474000000	2.861556000000	-0.845389000000
С	-3.535912000000	1.434560000000	-0.401144000000
Н	-2.872942000000	3.399355000000	-0.978486000000
Н	-4.598626000000	1.651479000000	-0.474320000000
0	-4.013222000000	-0.867455000000	0.047541000000
Н	-4.906715000000	-0.504242000000	-0.011716000000
Br	-1.490475000000	-2.074557000000	0.066136000000

2a GS1

С	2.957757000000	-0.140397000000	-2.994408000000
С	2.031618000000	-0.080332000000	-1.976957000000
С	2.446053000000	-0.068969000000	-0.615852000000
С	3.848431000000	-0.126060000000	-0.322111000000
С	4.776585000000	-0.191075000000	-1.396143000000
С	4.343353000000	-0.197340000000	-2.70400000000
Н	2.625544000000	-0.146787000000	-4.028134000000
Η	0.973830000000	-0.038162000000	-2.213281000000
С	1.513121000000	0.001292000000	0.461386000000
С	4.274734000000	-0.116902000000	1.034219000000
Η	5.837809000000	-0.234818000000	-1.166620000000
Η	5.062512000000	-0.245724000000	-3.516176000000
С	3.367147000000	-0.048818000000	2.061623000000
С	1.974055000000	0.009651000000	1.774511000000
Η	5.338382000000	-0.162091000000	1.250716000000
Η	3.692506000000	-0.040667000000	3.096137000000
С	1.043096000000	0.081999000000	2.864281000000
Ν	0.311356000000	0.143425000000	3.767803000000
С	0.047853000000	0.080665000000	0.192596000000
С	-0.731617000000	-1.079706000000	0.090077000000
С	-0.595924000000	1.317986000000	0.043489000000
С	-2.117306000000	-1.029503000000	-0.126502000000
С	-1.966493000000	1.404893000000	-0.174394000000
С	-2.708818000000	0.234013000000	-0.253109000000
Η	-2.449209000000	2.368079000000	-0.279176000000
0	-2.807447000000	-2.187524000000	-0.204683000000
Н	-3.749631000000	-1.992602000000	-0.341310000000
Br	0.072086000000	-2.785388000000	0.253782000000
Br	0.400552000000	2.934685000000	0.139593000000
Br	-4.589025000000	0.327291000000	-0.544562000000

2a TS1

С	-3.906774000000	-2.284427000000	-0.958371000000
С	-2.727153000000	-1.572742000000	-0.856793000000
С	-2.700282000000	-0.239917000000	-0.371518000000
С	-3.973517000000	0.391902000000	-0.158026000000
С	-5.159982000000	-0.390506000000	-0.167096000000
С	-5.129144000000	-1.717176000000	-0.537871000000
Η	-3.889986000000	-3.286825000000	-1.375629000000
Η	-1.822219000000	-2.011166000000	-1.251215000000
С	-1.485935000000	0.562496000000	-0.283126000000
С	-4.056109000000	1.809265000000	-0.126103000000
Η	-6.103914000000	0.100342000000	0.053444000000
Η	-6.044819000000	-2.299210000000	-0.577403000000
С	-2.959375000000	2.544154000000	-0.498738000000
С	-1.688325000000	1.922351000000	-0.631013000000
Η	-5.014740000000	2.288095000000	0.049442000000
Η	-3.034715000000	3.608248000000	-0.694061000000
С	-0.697345000000	2.710725000000	-1.302134000000
Ν	-0.007834000000	3.365006000000	-1.975879000000
С	-0.126121000000	0.069473000000	0.023102000000
С	0.961320000000	0.983606000000	0.235571000000
С	0.296476000000	-1.298489000000	0.119434000000
С	2.297090000000	0.637314000000	-0.018188000000
С	1.609639000000	-1.671731000000	-0.138712000000
С	2.585465000000	-0.699673000000	-0.315946000000
Η	1.882845000000	-2.719443000000	-0.125838000000
0	3.251730000000	1.586706000000	0.100235000000
Η	4.115929000000	1.200928000000	-0.118748000000
Br	0.764965000000	2.614840000000	1.222220000000
Br	-0.704237000000	-2.667607000000	1.020750000000
Br	4.371073000000	-1.194931000000	-0.729185000000

2a GS2

С	-2.957271000000	-0.139243000000	-2.994687000000
С	-2.031277000000	-0.079859000000	-1.977064000000
С	-2.445922000000	-0.068982000000	-0.616022000000
С	-3.848351000000	-0.125902000000	-0.322518000000
С	-4.776357000000	-0.190211000000	-1.396720000000
С	-4.342925000000	-0.195994000000	-2.704516000000
Н	-2.624905000000	-0.145218000000	-4.028366000000
Н	-0.973441000000	-0.037688000000	-2.213177000000
С	-1.513139000000	0.000726000000	0.461377000000
С	-4.274855000000	-0.117252000000	1.033757000000
Н	-5.837626000000	-0.233819000000	-1.167379000000
Н	-5.061974000000	-0.243816000000	-3.516822000000
С	-3.367402000000	-0.049816000000	2.061324000000
С	-1.974260000000	0.008596000000	1.774440000000
Η	-5.338543000000	-0.162349000000	1.250079000000
Η	-3.692906000000	-0.042088000000	3.095796000000
С	-1.043453000000	0.080525000000	2.864372000000
Ν	-0.311821000000	0.141625000000	3.768003000000
С	-0.047856000000	0.080361000000	0.192768000000
С	0.731804000000	-1.079845000000	0.089840000000
С	0.595682000000	1.317843000000	0.044023000000
С	2.117466000000	-1.029330000000	-0.126865000000
С	1.966223000000	1.405062000000	-0.173872000000
С	2.708745000000	0.234338000000	-0.253058000000
Η	2.448766000000	2.368371000000	-0.278333000000
0	2.807799000000	-2.187206000000	-0.205549000000
Η	3.749923000000	-1.992084000000	-0.342293000000
Br	-0.071594000000	-2.785669000000	0.253264000000
Br	-0.401042000000	2.934360000000	0.140689000000
Br	4.588920000000	0.328134000000	-0.544541000000

2a TS2

С	3.786949000000	-2.520138000000	0.747353000000
С	2.650693000000	-1.734622000000	0.754342000000
С	2.680096000000	-0.377755000000	0.342532000000
С	3.981087000000	0.196724000000	0.127946000000
С	5.118982000000	-0.649841000000	0.033747000000
С	5.023167000000	-1.995796000000	0.311673000000
Н	3.728286000000	-3.544640000000	1.102682000000
Н	1.743721000000	-2.140548000000	1.173689000000
С	1.513121000000	0.495386000000	0.328137000000
С	4.146122000000	1.606032000000	0.188891000000
Н	6.081582000000	-0.197864000000	-0.189087000000
Н	5.902728000000	-2.630944000000	0.269444000000
С	3.101561000000	2.377769000000	0.628904000000
С	1.799173000000	1.820555000000	0.741773000000
Н	5.127797000000	2.038943000000	0.021401000000
Н	3.240523000000	3.422417000000	0.884446000000
С	0.848875000000	2.647148000000	1.429302000000
Ν	0.195960000000	3.335538000000	2.105444000000
С	0.106161000000	0.157040000000	-0.006132000000
С	-0.516217000000	-1.134251000000	-0.063226000000
С	-0.824754000000	1.214242000000	-0.281103000000
С	-1.890237000000	-1.305225000000	0.176502000000
С	-2.190796000000	1.074390000000	-0.083053000000
С	-2.706205000000	-0.169903000000	0.248774000000
Н	-2.850533000000	1.919442000000	-0.231539000000
0	-2.387884000000	-2.563579000000	0.238990000000
Н	-3.348574000000	-2.517391000000	0.377781000000
Br	0.295244000000	-2.678107000000	-0.843218000000
Br	-0.351654000000	2.792338000000	-1.280655000000
Br	-4.562472000000	-0.382804000000	0.586244000000