Supplementary Information

Synthesis and anion recognition studies of new oligomethylene bis(nitrophenylureyl)benzamide receptors

José García-Elías,^{1,2} Adrián Ochoa-Terán,^{1*} Anatoli K. Yatsimirsky,³ Hisila Santacruz Ortega,⁴ Karen Ochoa-Lara,^{4*} Luis Miguel López-Martínez,¹ Christian L. Castro-Riquelme,¹ Ángel L. García,¹ Domingo Madrigal-Peralta,¹ Victoria Labastida-Galván⁵ and Mario Ordoñez⁵

1. Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana, Tijuana, México.

2. Unidad Académica de Ciencias de la Tierra, Universidad Autónoma de Zacatecas, Zacatecas, México.

Facultad de Química, Universidad Nacional Autónoma de México. Ciudad de México.

4. Departamento de Investigación en Polímeros y Materiales. Universidad de Sonora. Hermosillo, Sonora. México

5. Centro de Investigaciones Químicas-(IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.

*Correpondence author e-mail: ochoa@tectijuana.mx, karenol@polimeros.uson.mx

Figure S1. ¹H NMR spectra of ortho mono-ureabenzamide in DMSO-d₆.

Figure S2. ¹H NMR spectra of 4a in DMSO- d_6 .

Figure S4. ¹H NMR spectra of 4c in DMSO- d_6 .

Figure S6. ¹H NMR spectra of 4e in DMSO- d_6 .

Figure S7. ¹H NMR spectra of *meta* mono-ureabenzamide in DMSO-*d*₆.

Figure S8. ¹H NMR spectra of 8b in DMSO- d_6 .

Figure S9. ¹H NMR spectra of 8c in DMSO- d_6 .

Figure S10. ¹H NMR spectra of 8d in DMSO- d_6 .

Figure S11. ¹H NMR spectra of 8e in DMSO- d_6 .

Figure S12. UV-vis spectra and absorbance profiles obtained by the titration of the *ortho* mono-ureabenzamide with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

Figure S13. UV-vis spectra and absorbance profiles obtained by the titration of **4a** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

Figure S14. UV-vis spectra and absorbance profiles obtained by the titration of **4b** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

Figure S15. UV-vis spectra and absorbance profiles obtained by the titration of **4c** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i, j, k and l).

b)

Figure S16. UV-vis spectra and absorbance profiles obtained by the titration of **4d** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i, j, k and l).

a)

b)

Figure S17. UV-vis spectra and absorbance profiles obtained by the titration of **4e** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i, j, k and l).

Figure S18. UV-vis spectra and absorbance profiles obtained by the titration of the *meta* mono-ureabenzamide with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j)

Figure S19. UV-vis spectra and absorbance profiles obtained by the titration of **8a** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

Figure S20. UV-vis spectra and absorbance profiles obtained by the titration of **8b** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

Figure S21. UV-vis spectra and absorbance profiles obtained by the titration of **8c** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

Figure S22. UV-vis spectra and absorbance profiles obtained by the titration of **8d** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

Figure S23. UV-vis spectra and absorbance profiles obtained by the titration of **8e** with TBAA (a and b), TBAB (c and d), TBAF (e and f), TBAHP (g and h) and TBAHPP (i and j).

12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 ppm

Figure S24. ¹H NMR spectra obtained by titration of *ortho* mono-ureylbenzamide with TBAA in DMSO- d_6 .

Figure S25. ¹H NMR spectra obtained by titration of *ortho* mono-ureabenzamide with TBAB in DMSO- d_6 .

Figure S26. ¹H NMR spectra obtained by titration of *ortho* mono-ureabenzamide with TBAF in DMSO- d_6 .

Figure S27. ¹H NMR spectra obtained by titration of *ortho* mono-ureabenzamide with TBAHP in DMSO- d_6 .

Figure S28. ¹H NMR spectra obtained by titration of *ortho* mono-ureylbenzamide with TBAHPP in DMSO- d_6 .

Figure S29. ¹H NMR spectra obtained by titration of 4b with TBAA in DMSO- d_6 .

^^			L			
		l_l	ll_n			
		l_	M			m
	~		ll_n_	M	ľ	
			In	M	L	M
			In		L	
M			M	h	L	M
Λ		h_r	M		K	h
			M			h
M			In			h
			M			h
	X					h

Figure S30. ¹H NMR spectra obtained by titration of 4b with TBAB in DMSO- d_6 .

Figure S31. ¹H NMR spectra obtained by titration of 4b with TBAF in DMSO- d_6 .

Figure S32. ¹H NMR spectra obtained by titration of 4b with TBAHP in DMSO- d_6 .

Figure S33. ¹H NMR spectra obtained by titration of 4b with TBAHPP in DMSO- d_6 .

Figure S34. ¹H NMR spectra obtained by titration of 4c with TBAA in DMSO- d_6 .

Figure S35. ¹H NMR spectra obtained by titration of 4c with TBAB in DMSO- d_6 .

Figure S36. ¹H NMR spectra obtained by titration of 4c with TBAF in DMSO- d_6 .

Figure S37. ¹H NMR spectra obtained by titration of 4c with TBAHP in DMSO- d_6 .

Figure S38. ¹H NMR spectra obtained by titration of 4c with TBAHPP in DMSO- d_6 .

Figure S39. ¹H NMR spectra obtained by titration of 4d with TBAA in DMSO- d_6 .

Figure S40. ¹H NMR spectra obtained by titration of 4d with TBAB in DMSO-*d*₆.

11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 f1 (ppm)

Figure S41. ¹H NMR spectra obtained by titration of 4d with TBAF in DMSO-*d*₆.

Figure S42. ¹H NMR spectra obtained by titration of 4d with TBAHP in DMSO- d_6 .

Figure S43. ¹H NMR spectra obtained by titration of 4d with TBAHPP in DMSO- d_6 .

13.4 13.2 13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 fl (nom)

Figure S44. ¹H NMR spectra obtained by titration of *meta* mono-ureylbenzamide with TBAA in DMSO- d_6 .

Figure S45. ¹H NMR spectra obtained by titration of *meta* mono-ureabenzamide with TBAB in DMSO- d_6 .

Figure S46. ¹H NMR spectra obtained by titration of *meta* mono-ureabenzamide with TBAF in DMSO- d_6 .

13.2 13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2

Figure S47. ¹H NMR spectra obtained by titration of *meta* mono-ureabenzamide with TBAHP in DMSO- d_6 .

10.2 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 ppm

Figure S48. ¹H NMR spectra obtained by titration of *meta* mono-ureabenzamide with TBAHPP in DMSO- d_6 .

134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 75 74 72 70 T[000]

Figure S49. ¹H NMR spectra obtained by titration of **8b** with TBAA in DMSO- d_6 .

Figure S50. ¹H NMR spectra obtained by titration of 8b with TBAB in DMSO-*d*₆.

Figure S51. ¹H NMR spectra obtained by titration of **8b** with TBAF in DMSO-*d*₆.

13.2 13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 f1 (pm)

Figure S52. ¹H NMR spectra obtained by titration of 8b with TBAHP in DMSO-*d*₆.

Figure S53. ¹H NMR spectra obtained by titration of **8b** with TBAHPP in DMSO-*d*₆.

13.2 13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 fl (ppm)

Figure S54. ¹H NMR spectra obtained by titration of 8c with TBAA in DMSO-*d*₆.

13.2 13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 f1 (ppm)

Figure S55. ¹H NMR spectra obtained by titration of 8c with TBAB in DMSO- d_6 .

Figure S56. ¹H NMR spectra obtained by titration of 8c with TBAF in DMSO- d_6 .

Figure S57. ¹H NMR spectra obtained by titration of 8c with TBAHP in DMSO- d_6 .

Figure S58. ¹H NMR spectra obtained by titration of 8c with TBAHPP in DMSO- d_6 .

Figure S59. ¹H NMR spectra obtained by titration of 8d with TBAA in DMSO-*d*₆.

13.4 13.2 13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 fl (ppm)

Figure S60. ¹H NMR spectra obtained by titration of 8d with TBAB in DMSO-*d*₆.

Figure S61. ¹H NMR spectra obtained by titration of 8d with TBAF in DMSO- d_6 .

12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 f1 (ppm)

Figure S62. ¹H NMR spectra obtained by titration of 8d with TBAHP in DMSO- d_6 .

Figure S63. ¹H NMR spectra obtained by titration of 8d with TBAHPP in DMSO- d_6 .

c)

d)

f)

e)

Figure S64. Optimized geometries for the complexes **4d**-BnO⁻ (a and b), **4d**-H₂PO₄⁻ (c and d) and **4d**-HP₂O₇³⁻ (e and f) by DFT.

Figure S65. Optimized geometries for the complexes **8a**-AcO⁻ (a), **8c**- AcO⁻ (b), **8d**-AcO⁻ (c) and **8e**- AcO⁻ (d) by DFT.

Figure S66. Optimized geometries for the complexes $8b-H_2PO_4^-$ (a and b), and $8d-H_2PO_4^-$ (c and d).

e)

Frontal view

c)

a)

Lateral view f)

Figure S67. Optimized geometries for the complexes **8b**-HP₂O₇³⁻ (a and b), **8d**-HP₂O₇³⁻ (c and d) and **8e**-HP₂O₇³⁻.

UV-Vis data fitting with HypSpec

HypSpec. Refinement concluded at 7/1/2018 10:32:27 PM Project title: *ortho* monourea-AcO.HQD

Converged in 1 iterations with sigma = 1.6884E-03value Log beta standard deviation AR2 10.112 0.0172 Data at 375 : Point 6 titre .015 100 90 0.16 80 % formation relative to AcO 0.12 70 0.12 60 Intensity Intensity 50 0.08 40 0.10 -30 0.04 20 10 0.08 -0 ignored Obs-Calc intensity (unweighted) 0.005 200.02 0 -0.002 value 0 -0.005 370 0.005 0.015 0.025 390 350 330 310 290 wavelength titre volume/ml

HypSpec. Refinement concluded at 7/11/2018 7:18:34 PM Project title: *ortho* monourea-BzO.HQD

Converged in 1 iterations with sigma = 1.1235E-03

HypSpec. Refinement concluded at 7/11/2018 7:44:00 PM Project title: *ortho* monourea-F.HQD Converged in 1 iterations with sigma = 6.6153E-04

HypSpec. Refinement concluded at 7/11/2018 10:10:08 PM Project title: *ortho* monourea-HP.HQD Converged in 1 iterations with sigma = 1.5920E-03

HypSpec. Refinement concluded at 7/12/2018 12:16:39 AM Project title: *ortho* monourea-HPP.HQD Converged in 1 iterations with sigma = 7.7532E-04

Project title: **4a-AcO**. HQD Converged in 1 iterations with sigma = 2.3631E-03

Log betavaluestandard deviationRA6.51360.0232R2A was ignored

HypSpec. Refinement concluded at 7/16/2018 10:08:36 PM Project title: **4a-BzO**.HQD Converged in 1 iterations with sigma = 8.0351E-04 Log beta value standard deviation

HypSpec. Refinement concluded at 7/12/2018 1:10:04 AM Project title: **4a-F**.HQD Converged in 1 iterations with sigma = 1.3994E-03

HypSpec. Refinement concluded at 7/12/2018 1:55:33 PM Project title: **4a-HP**.HQD Converged in 2 iterations with sigma = 3.0051E-03

Log betavaluestandard deviationRA211.94670.1105RA6.30860.1417

HypSpec. Refinement concluded at 7/12/2018 2:16:17 PM Project title: **4a-HPP**.HQD Converged in 1 iterations with sigma = 1.3920E-03

HypSpec. Refinement concluded at 7/2/2018 7:18:40 PM Project title: **4b-AcO**.HQD Converged in 1 iterations with sigma = 5.5868E-04 Log beta value standard deviation

HypSpec. Refinement concluded at 7/11/2018 7:58:54 PM Project title: **4b-BzO**.HQD Converged in 3 iterations with sigma = 3.9648E-04

HypSpec. Refinement concluded at 7/11/2018 7:41:09 PM Project title: **4b-F**.HQD Converged in 1 iterations with sigma = 1.1825E-03

HypSpec. Refinement concluded at 7/12/2018 2:34:42 PM Project title: **4b-HP**.HQD Converged in 1 iterations with sigma = 1.5268E-03

Log beta	value	standard deviation	
RA	5.2076	0.1246	
RA2	10.6405	0.055	

HypSpec. Refinement concluded at 7/12/2018 2:56:30 PM

Project title: **4b-HPP**.HQD Converged in 1 iterations with sigma = 1.7395E-03

HypSpec. Refinement concluded at 7/12/2018 8:59:30 PM Project title: **4c-AcO**.HQD

Converged in 1 iterations with sigma = 1.2113E-03

HypSpec. Refinement concluded at 7/13/2018 1:31:01 AM Project title: **4c-BzO**.HQD

Converged in 1 iterations with sigma = 4.2902E-04

Log beta value standard deviation 4.9409 RA 0.0024 40000 Data at 375 : Point 6 titre .015 0.20 100 90 80 ation relative to R 30000 0.30 70 0.18 Molar absorbance -60 -50 -40 -30 Intensity Intensity 0.20 20000 0.16 0.10 ~ 20 10 10000 0.14 0 Obs-Calc intensity (unweighted) 9 5.0E-4 9 0 5.0E-4 1.0E-3 enue-4 vue-4 vue-_{ուսունուն} ուսունություն 11110 . 0+ 400 360 Wavelength 380 320 340 5 7 9 11 point number 400 380 360 340 320 300 wavelength

HypSpec. Refinement concluded at 7/13/2018 5:28:20 PM Project title: **4c-F**.HQD Converged in 1 iterations with sigma = 1.0976E-03

standard deviation

Log beta value

R	Ā	6.3429	0.0725			
R	A2	11.9841	0.0669			
R	A3	16.5973	0.1061			
Intensity	0.26 - 0.22 - 0.18 - 0.18 -	. Data at 375	1000 300 - 0.30 - 0.30 - 0.00 400 undative to X 100 - 0.10 - 0.00 - 0.00 100 - 0.10 - 0.00 - 0.00 100 - 0.00 - 0.00 - 0.00 - 0.00 100 - 0.00 -	: Point 6 titre .015	40000- 30000- 20000- 10000-	
value	0.002 - 0 - -0.002 -	1 3 5 7 9 11 point number	0.001 - 0.001 - -0.001 - -0.001 - 40	10 380 360 340 320 300 wavelength	0 400 380 360 340 320 Wavelength	

HypSpec. Refinement concluded at 7/13/2018 12:22:45 PM Project title: **4c-HP**.HQD Converged in 1 iterations with sigma = 1.3262E-03

HypSpec. Refinement concluded at 7/13/2018 12:42:57 PM Project title: **4c-HPP**.HQD Converged in 1 iterations with sigma = 1.9796E-03

HypSpec. Refinement concluded at 6/27/2018 6:56:14 PM Project title: **4d-AcO**.HQD Converged in 5 iterations with sigma = 3.2722E-04

HypSpec. Refinement concluded at 7/13/2018 4:53:49 PM Project title: **4d-BzO**.HQD Converged in 1 iterations with sigma = 3.5907E-04

HypSpec. Refinement concluded at 7/13/2018 5:23:13 PM Project title: **4d-F**.HQD Converged in 1 iterations with sigma = 6.0485E-04

HypSpec. Refinement concluded at 7/13/2018 8:32:37 PM Project title: **4d-HP**.HQD Converged in 1 iterations with sigma = 1.2110E-03

standard deviation

Log beta value

HypSpec. Refinement concluded at 7/27/2018 1:12:08 PM Project title: **4d-HPP**.HQD Converged in 13 iterations with sigma = 8.0323E-04

HypSpec. Refinement concluded at 6/27/2018 7:02:20 PM Project title: **4e-AcO**.HQD Converged in 1 iterations with sigma = 5.4968E-04

HypSpec. Refinement concluded at 7/14/2018 11:05:25 AM Project title: **4e-BzO**.HQD Converged in 1 iterations with sigma = 4.5496E-04

Log beta value standard deviation 4.716 0.0033 RA Data at 375 : Point 6 titre .015 100 0.30 90 30000 80 % formation relative to R 0.15 70 0.20[.] 60 Intensity Molar absorbance 50 Inten 20000 40 0.13 -30 0.10 20 10 10000 0.11 ia Obs-Calc intensity (unweighted) 5.0E-4-0.001 I որելերեր -5.0E-4 0 400 360 Wavelength 380 340 320 3 5 7 point number 9 380 360 340 320 3 11 400 300 wavelength

HypSpec. Refinement concluded at 7/15/2018 1:03:30 AM Project title: **4e-F**.HQD Converged in 1 iterations with sigma = 7.4362E-04

Log beta	value	standard deviation
RA2	9.1398	0.0205
RA3	13.4794	0.0271

HypSpec. Refinement concluded at 7/27/2018 12:35:43 PM Project title:**4e-HP**.HQD Converged in 1 iterations with sigma = 9.4836E-04

HypSpec. Refinement concluded at 7/27/2018 1:17:20 PM Project title: **4e-HPP**.HQD Converged in 1 iterations with sigma = 6.0791E-04

HypSpec. Refinement concluded at 7/16/2018 9:03:08 PM Project title: *meta* monourea-AcO.HQD Converged in 10 iterations with sigma = 3.3610E-04

HypSpec. Refinement concluded at 7/16/2018 9:10:51 PM Project title: *meta* monourea-BzO.HQD Converged in 1 iterations with sigma = 1.0129E-03

HypSpec. Refinement concluded at 7/16/2018 10:13:07 PM Project title: *meta* monourea-F.HQD Converged in 1 iterations with sigma = 1.1001E-03

HypSpec. Refinement concluded at 7/16/2018 4:03:04 PM Project title: *meta* monourea-HP.HQD Converged in 1 iterations with sigma = 3.2188E-03

HypSpec. Refinement concluded at 7/16/2018 3:59:06 PM Project title: *meta* monourea-HPP.HQD Converged in 1 iterations with sigma = 1.5852E-03

HypSpec. Refinement concluded at 6/20/2018 12:00:35 AM Project title: **8a-AcO**.HQD Converged in 1 iterations with sigma = 3.0414E-03

HypSpec. Refinement concluded at 6/20/2018 12:02:02 AM Project title: **8a-BzO**.HQD Converged in 1 iterations with sigma = 1.4155E-03

HypSpec. Refinement concluded at 6/20/2018 12:03:17 AM Project title: **8a-F**.HQD Converged in 1 iterations with sigma = 2.6858E-03

HypSpec. Refinement concluded at 6/20/2018 12:04:19 AM Project title: **8a-HP**.HQD Converged in 1 iterations with sigma = 1.7125E-03

HypSpec. Refinement concluded at 6/20/2018 12:06:12 AM Project title: **8a-HPP**.HQD Converged in 1 iterations with sigma = 4.8826E-03

HypSpec. Refinement concluded at 7/27/2018 6:03:40 PM Project title: **8b-AcO**.HQD Converged in 18 iterations with sigma = 2.1723E-03

HypSpec. Refinement concluded at 7/27/2018 6:11:44 PM Project title: **8b-AcO**.HQD Converged in 1 iterations with sigma = 1.0627E-03

HypSpec. Refinement concluded at 7/27/2018 6:21:17 PM Project title: **8b-F**.HQD Converged in 1 iterations with sigma = 2.8643E-03

HypSpec. Refinement concluded at 7/27/2018 6:23:45 PM Project title: **8b-HP**.HQD Converged in 1 iterations with sigma = 1.6268E-03

HypSpec. Refinement concluded at 7/27/2018 6:26:11 PM Project title: **8b-HPP**.HQD Converged in 1 iterations with sigma = 3.5916E-03

HypSpec. Refinement concluded at 7/27/2018 4:10:56 PM Project title: **8c-AcO**.HQD Converged in 1 iterations with sigma = 2.8907E-03

HypSpec. Refinement concluded at 7/27/2018 6:31:32 PM Project title: **8c-BzO**.HQD Converged in 1 iterations with sigma = 1.9667E-03

HypSpec. Refinement concluded at 7/27/2018 6:33:50 PM Project title: **8c-F**.HQD Converged in 1 iterations with sigma = 2.0366E-03

HypSpec. Refinement concluded at 7/27/2018 6:36:03 PM Project title: **8c-HP**.HQD

Converged in 1 iterations with sigma = 1.1649E-03

HypSpec. Refinement concluded at 7/27/2018 6:39:00 PM Project title: **8c-HPP**.HQD Converged in 1 iterations with sigma = 5.5535E-04

Log beta	value	standard deviation
R2A	14.2928	0.1251
RA	7.0242	0.0666

HypSpec. Refinement concluded at 7/27/2018 4:59:23 PM Project title: **8d-AcO**.HQD Converged in 1 iterations with sigma = 2.3691E-03

HypSpec. Refinement concluded at 7/27/2018 5:02:04 PM Project title: **8d-BzO**.HQD Converged in 1 iterations with sigma = 7.2912E-04

Log beta	value	standard deviation
RA	5.8043	0.0265
RA2	10.2551	0.0469

HypSpec. Refinement concluded at 7/27/2018 5:46:17 PM Project title: **8d-F**.HQD Converged in 1 iterations with sigma = 6.2726E-03

HypSpec. Refinement concluded at 7/27/2018 5:48:19 PM Project title: **8d-HP**.HQD Converged in 1 iterations with sigma = 7.9146E-04

Log beta	value	standard deviation
RA	7.7392	0.0651
RA2	13.427	0.069

HypSpec. Refinement concluded at 7/27/2018 5:50:29 PM Project title: **8d-HPP**.HQD Converged in 1 iterations with sigma = 5.7763E-04

HypSpec. Refinement concluded at 7/27/2018 6:43:09 PM Project title: **8e-AcO**.HQD Converged in 9 iterations with sigma = 2.2555E-03

standard

HypSpec. Refinement concluded at 7/27/2018 6:46:41 PM Project title: **8d-BzO**.HQD Converged in 2 iterations with sigma = 9.4409E-04

HypSpec. Refinement concluded at 7/27/2018 7:15:25 PM Project title: **8d-F**.HQD Converged in 1 iterations with sigma = 2.6001E-03

HypSpec. Refinement concluded at 7/27/2018 7:18:24 PM Project title: **8d-HP**.HQD Converged in 1 iterations with sigma = 2.6383E-03

HypSpec. Refinement concluded at 7/27/2018 8:15:36 PM Project title: **8d-HPP**.HQD Converged in 1 iterations with sigma = 4.8244E-03

¹H NMR data fitting with HypNMR

Project title: ortho monourea-AcO

Converged in 3 iterations with sigma = 8.078370

		standard	
	value	deviation	Comments
1 log beta(AR)	1.9021	0.0087	1.902(9)

ortho monourea-AcO chemical shifts

nucleus	R	AR
H1	10.6313	11.8729
H2	10.4578	13.0781
H3	8.7744	8.1858
H4	8.2335	7.3264
H5	8.1934	8.0881
H6	7.7588	7.8002
H7	7.6814	7.4667
H8	7.4694	7.3317
H9	7.0946	7.1064

Project title: ortho monourea-BzO

Converged in 4 iterations with sigma = 3.664169

		standard	
	value	deviation	Comments
1 log beta(AR)	1.7011	0.0065	1.701(7)

ortho monourea-BzO chemical shifts

nucleus	R	AR
H1	10.6256	11.5357
H2	10.4464	12.6541
H3	8.7612	8.4169
H4	8.2238	7.6342
H5	8.1908	8.1628
H6	7.7592	7.9605
H7	7.6814	7.5492
H8	7.4681	7.4027
H9	7.0934	7.1355

Project title: *ortho* monourea-HP Converged in 5 iterations with sigma = 0.658406

		standard	
	value	deviation	Comments
1 log beta(LR)	2.2252	0.0108	2.23(1)

ortho monourea-HP chemical shifts

nucleus	R	LR
H2	10.4460	11.4133
H3	8.7614	8.9287
H4	8.2346	7.9080
H5	8.1915	8.1486
H6	7.7597	7.8058
H7	7.6823	7.6042
H8	7.4686	7.4185
H9	7.0933	7.1119

Project title: **4b-AcO** Converged in 1 iterations with sigma = 9.299599

	standard		
	value	deviation	Comments
1 log beta(AcOR)	2.0857	0.0155	2.09(2)

4b-AcO chemical shifts

nucleus	R	AcOR	Δδ
H1	10.5900	11.3917	0.8
H2	10.4400	12.0646	1.62
H3	8.8200	8.6472	-0.17

Project title: **4b-BzO** Converged in 1 iterations with sigma = 17.769959

1 log beta(Bz	OR)	standard value 1.99	deviation 0.036	Comments 1.99(4)
4b-BzO chem	ical sh	ifts		
nucleus	R		BzOR	
H1	10.59	00	11.3456	
H2	10.44	00	11.8792	
Н3	no ch	ange		
		-		

Project title: **4b-HP** Converged in 1 iterations with sigma = 25.206265

1 log be 2 log be	ta(AR) ta(A2R)	value 3.0616 5.5893	sta de exc exc	ndard viation cessive cessive	C relative e relative en	omments rror on b rror on b	s beta = 16 eta = 12	53% 2%
4b-HP	chemical sh	ifts						
nucleus	R		AR	А	2R	$\Delta \delta_{01}$	$\Delta\delta_{12}$	$\Delta\delta_{02}$
H1	10.59		10.74	10	0.62	0.15	-0.12	0.03
H2	10.44		11.31	1	1.68	0.87	0.37	1.24

Project title: **4c-AcO** Converged in 1 iterations with sigma = 14.407662

		standard	
	value	deviation	Comments
log beta(AcOR)	2.0187	0.0241	2.02(2)
log beta(AcO2R)	was ignor	red	

4c-AcO chemical shifts					
nucleus	R	AcOR	$\Delta \delta_{01}$		
H1	10.6100	11.2983	0.6883		

Project title: **4c-BzO** Converged in 1 iterations with sigma = 0.515915

log beta(BzOR) log beta(BzO2R)	value 2.1131 was ignor	standard deviation 0.0122 red	Comments 2.11(1)
4c-BzO chemical	shifts		

nucleus	R	BzOR	$\Delta\delta_{01}$
H1	10.6100	11.0405	0.43

Project title: **4d-AcO** Converged in 1 iterations with sigma = 20.371878

log beta(ac	oR)	value 1.922	standard deviation 0.0405	Comments 1.92(4)
4d-AcO ch	emical sh	ifts		
nucleus	R		AcOR	$\Delta\delta$
H1	10.61		11.30	0.69

Project title: **4d-BzO** Converged in 1 iterations with sigma = 13.574154

		standard	
	value	deviation	Comments
log beta(bzoR)	1.8487	0.0218	1.85(2)

4d-BzO	chemical	shifts
1	р	

nucleus	R	bzoR	$\Delta \delta_{01}$
H1	10.61	11.37	0.76

Project title: **4d-HP** Converged in 23 iterations with sigma = 1.426437

			standard				
		value	deviation	Commen	nts		
log beta(He	osR)	2.3084	excessive	relative error	on beta =	= 73%	
log beta(Ho	os2R)	4.1095	excessive	relative error	on beta =	= 191%	
4d-HP che	mical sh	ifts					
nucleus	R	f	osR	fos2R	$\Delta\delta_{01}$	$\Delta\delta_{12}$	$\Delta\delta_{02}$

H1	10.61	10.63	10.86	0.02	0.23	0.25
H2	10.44	11.78	11.37	1.34	-0.41	0.93
H3	8.75	9.08	9.05	0.33	-0.03	0.3

Project title: *meta* monourea-AcO

Converged in 1 iterations with sigma = 63.217288

		standard	
	value	deviation	Comments
1 log beta(AR)	3.611	0.0629	3.61(6)

meta monourea-AcO chemical shifts

nucleus	R	RA
H1	9.2429	13.3427
H2	8.8631	12.7461
H3	8.4200	0.0000
H4	8.2048	8.1385
H5	7.8909	8.0943
H6	7.6989	7.8674
H7	7.6190	7.6971
H8	7.4772	7.3425
H9	7.3856	7.2917

Project title: *meta* monourea-BzO Converged in 1 iterations with sigma = 61.501691

	standard		
	value	deviation	Comments
log beta(AR)	3.2543	0.0349	3.25(3)

meta monourea-BzO chemical shifts

nucleus	R	AR
H1	9.4513	13.2474
H2	9.0621	12.6802
Н5	7.8983	8.2067
H6	7.7073	7.9730
H7	7.6256	7.7867
H8	7.4710	7.3816
Н9	7.3814	7.3398

Project title: *meta* monourea-HP Converged in 5 iterations with sigma = 15.447629

		standard	
	value	deviation	Comments
1 log beta(AR)	5.0253	excessive	relative error on beta = 41%
2 log beta(A2R)	8.2075	excessive	relative error on beta = 54%
3 log beta(A3R)	11.047	fixed	

meta monourea-HP chemical shifts

R	AR	A2R	A3R
9.4742	11.3975	13.1452	11.8403
9.0829	10.9443	12.2436	11.2898
8.4447	8.4025	8.4005	8.6820
8.2012	8.1370	8.1014	8.1075
7.8982	8.0869	8.1864	8.0060
7.7069	7.8810	8.0188	7.9561
7.6245	7.7176	7.8114	7.8588
7.4696	7.3822	7.3276	7.3890
7.3805	7.3031	7.2592	7.2866
	R 9.4742 9.0829 8.4447 8.2012 7.8982 7.7069 7.6245 7.4696 7.3805	RAR9.474211.39759.082910.94438.44478.40258.20128.13707.89828.08697.70697.88107.62457.71767.46967.38227.38057.3031	RARA2R9.474211.397513.14529.082910.944312.24368.44478.40258.40058.20128.13708.10147.89828.08698.18647.70697.88108.01887.62457.71767.81147.46967.38227.32767.38057.30317.2592

Project title: **8b-AcO** Converged in 4 iterations with sigma = 4.153617

		standard	
	value	deviation	Comments
1 log beta(AcOR)	4.0706	0.12	4.1(1)
2 log beta(AcO2R)	7.5661	0.16	7.6(2)

8b-AcO chemical shifts

Nucleus	R	AcOR	AcO2R
H1	9.5000	10.6550	13.2460
H2	9.1100	10.2190	12.6774
H4	7.9400	7.9760	8.1233
H5	7.7100	7.7630	7.8742

Project title: **8b-BzO** Converged in 5 iterations with sigma = 2.057031

	standard		
	value	deviation	Comments
1 log beta(BzOR)	5.3415	0.37	5.3(4)
2 log beta(BzO2R)	8.8922	0.65	8.9(7)

Project title: **8b-HP** Converged in 1 iterations with sigma = 1.226338

standard value deviation Comments 1 log beta(PhosR) 5.0811 excessive relative error on beta = 90% 2 log beta(Phos2R) 9.4263 excessive relative error on beta = 183% 3 log beta(Phos3R) 12.6259 excessive relative error on beta = 182%

nucleus	R	PhosR	Phos2R	Phos3R	$\Delta\delta_{01}$	$\Delta\delta_{12}$	$\Delta\delta_{23}$	$\Delta\delta_{03}$
H1	9.49	11.02	11.66	12.71	1.53	0.64	1.05	3.22
H2	9.11	10.53	10.62	10.54	1.42	0.09	-0.08	1.43
H3	8.52	8.51	9.04	9.26	-0.01	0.53	0.22	0.74

Project title: **8c-AcO** Converged in 1 iterations with sigma = 91.232749

standard value deviation Comments 1 log beta(AcO2R) 5.4566 0.0779 5.46(8)

8c-AcO chemical shifts

nucleus	R	AcO_2R	Δδ
H1	9.48	13.07	3.59
H2	9.09	12.51	3.42
Н3	8.50	no change	

Project title: **8c-BzO** Converged in 6 iterations with sigma = 7.950490

standard value deviation Comments 1 log beta(BzO2R) 5.3276 0.0975 5.33(1)

8c-BzO chemical shifts

Project title: **8c-HP** Converged in 1 iterations with sigma = 18.153318

	value	standard deviation	Comments
log beta(phosR)	4.93	excessive	relative error on beta = 141%
log beta(phos2R)	8.96	excessive	relative error on beta = 269%

log beta(phos3R) 11.27

excessive

sive relativ

relative error on beta = 261%

8c-HP chemical shifts

nucleus	R	phosR	phos2R	phos3R	$\Delta\delta_{01}$	$\Delta\delta_{12}$	$\Delta\delta_{23}\ \Delta\delta_{03}$
H1	9.49	11.16	11.58	12.88	1.67	0.42	1.30 3.39
H2	9.10	10.57	10.92	10.58	1.47	0.35	-0.34 1.48
H3	8.50	8.51	8.70	8.98	0.01	0.19	0.28 0.48

Project title: **8d-AcO** Converged in 1 iterations with sigma = 12.212353

> standard value deviation Comments

1 log beta(AcO2R) 5.2886 0.0971 5.29(1)

C6-meta-AcO chemical shifts

nucleus	R	AcO2R	$\Delta\delta$
H1	9.47	13.21	3.74
H2	9.08	12.63	3.55
Н3	8.47	no change	

Project title: **8d-BzO** Converged in 1 iterations with sigma = 8.367374

		standard	
	value	deviation	Comments
1 log beta(BzO2R)	5.9089	0.0885	5.91(9)
2 log beta(BzOR)	3.0023	0.0604	3.0(6)

Project title: **8d-HP** Converged in 1 iterations with sigma = 4.577521

standard value deviation Comments log beta(fosR) 2.50 fixed log beta(fos2R) 4.4724 excessive relative error on beta = 133%
log beta(fos3R) was ignored

8d-HP chemical shifts

nucleus	R	fosR	fos2R
H1	9.4800	12.8756	11.9990
H2	9.0900	12.2900	10.5342
H3	8.4700	8.2716	8.9214

