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Supramolecular Structures of Terbium (III) Porphyrin Double-
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Abstract: This work mainly reports observation of novel supramolecular structures of TbIII-5,15-bisdodecylporphyrin (BDP, C12P) double-
decker complex on the surfaces of single-walled carbon nanotubes (SWNTs) performed by scanning tunneling microscopy under an ultra-
high vacuum and low temperature, atomic force microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, and 
ultraviolet–visible spectroscopy. The molecules formed a well-ordered self-assembled helix-shaped array with regular periodicity on the tube 
surface. Additionally, some magnetic properties of the BDP–molecule as well as the resulting BDP–SWNT composites were investigated by 
superconducting quantum interference measurements. The molecule exhibits single-molecule magnetic (SMM) properties and the 
composite’s magnetization increases almost linearly with decreasing temperature which possibly due to the coupling between porphyrin 
molecules and SWNT. Consequently, this may enable the development of more advanced spintronic devices based on porphyrin–
nanocarbon composites.
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Experimental Section

Synthesis and Characterization

The target complexes i.e. protonated 1, anionic 2 as well as radical 3 forms have been synthesized as depicted in Scheme S1.
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Scheme S1. Procedures for synthesizing protonated form 1, anionic form 2 and radical form 3 complexes of TbIII-5,15-bisdodecylporphyrin.

Characterization Techniques

Mass spectra were recorded using a Shimadzu AXIMA-CFR MALDI-TOF mass spectrometer. UV-Visible adsorption spectra were 

carried out on a Shimadzu UV-3150 double-beam spectrophotometer. The SEM-EDS image was captured on a JEOL JSM-7600F 

microscope equipped with an EDS analyzer. The applicable range of acceleration voltage at normal measurement: 1–30 kV with 

maximum resolution of about 1 nm. Elemental analysis was performed by using a Yanaco CHN CORDER MT-5 instrument. Atomic 

force microscopic measuments were recorded using JEOL SPM-5200 scanning probe microscope (SPM). All the AFM images were 

taken using tapping mode under ambient conditions on HOPG surface. 

The STM measurements were conducted using OMICRON scanning probe microscope with NanoNis software, Germany. All STM 

images were captured in a constant current mode under ultra-high vacuum and low temperature. The STM tip has been purchased 

from the provider, where it is prepared using special preparation tool, and have been used as received. The tip preparation tool is 

designed for efficient cleaning of SPM tunneling tips from etching remains or oxides which can create artefacts or unstable tips during 

imaging or spectroscopy applications. This process requires temperatures above 1000 °C at the tip to remove those remains. From a 

thoriated tungsten filament in the tip preparation tool electrons are emitted. Due to the electron bombardment the SPM tip is cleaned 

from deposits.

Magnetic susceptibility measurements were performed using a Quantum Design MPMS-XL AC (Super-Conducting Quantum 

Interference Device, SQUID) magnetometer. Alternating current (ac) measurements were performed at various frequencies from 1 to 

997 Hz with an ac field amplitude of 3.9 G in the presence of a direct current (dc) field (zero and 2000 Oe), however the direct current 

(dc) measurements were conducted at 2000 Oe field under different temperature range from 2 to 300 K. Measurements were carried 

out on a randomly oriented powder sample with magnetic field.
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Purification of Raw-HiPCO SWNT

Since we used raw HiPCO-SWNTs, the sample was purified from amorphous carbon and metal catalysts by heating and refluxing 
with concentrated mineral acids i.e. HCl, respectively. The sample was then washed with an aqueous solution of NaHCO3 to be 
neutralized. Thereafter, SWNT was dried in the oven for further usage. The detailed purification steps have been reported in our 
previous study.1

UV-Vis of Raw-HiPCO SWNT

Figure S1. UV-vis spectra of raw HiPCO-SWNT includes a mixture of chiral and achiral SWNTs with different (m,n) as well as handedness 

chiralities, dispersed in both CH2Cl2 and sodium dodecyl benzene sulfonate (SDBS).  

Results and Discussion

DFT Calculations and Molecular Modeling

The optimised structure of the [Y(BDP)2]• calculated using density functional theory (DFT) calculation with B3LYP/3-21G (for C, H, N) 
& SDD (for Y) functional level as well as the frontier molecular orbitals (HOMO and LUMO) and their absolute energies values are 
demonstrated in Figure S2 and Table S1, respectively. 

Figure S2. Optimized geometric structure of [Y(BDP)2]• calculated using DFT calculation with B3LYP/3-21G (for C, H, N) & SDD (for Y) functional level. In the 

modeling, C-atoms are shown with the grey color, H in white, iridium Y in green and N in blue.
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Table S1. The frontier molecular orbitals (HOMO and LUMO) and their absolute energies values of [Y(BDP)2]• (α-shape) calculated using DFT calculation with 

B3LYP/3-21G (for C, H, N) & SDD (for Y) functional level.

UV-Vis Spectra of Tb-Porphyrin Double-Decker Complexes

The Soret peaks of the protonated form 1 (392 nm) and anionic form 2 (396 nm) were blue-shifted relative to that of the BDP (C12P) 
ligand (404 nm); however, this peak was red-shifted for the anionic form 2 relative to the protonated form 1 (Figure S3). According to 
the literature,2-4 the radical forms of porphyrin and phthalocyanine double-decker complexes have a characteristic broad Q-band in 
the near-infrared (NIR) region together with the Soret band (UV-vis region). Therefore, an NIR absorption band was observed at 1153 
nm, in addition to the blue shift of the Soret peak of the radical form 3 (387 nm) relative to those of the BDP ligand (404 nm), 
protonated form 1 (392 nm), and anionic form 2 (396 nm). In the radical form 3, the cofacial distance between the two porphyrin rings 
decreases because of an increase in the bond order, due to the removal of an electron from the antibonding orbital of the HOMO,5-9 
ultimately resulting in blue-shifting of the Soret band of 3 (Figure S3).

Figure S3. UV-Vis spectra of BDP (C12P), protonated 1, anionic 2, and radical 3 form complexes in dichloromethane.
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Supramolecular Structures of Tb-Porphyrin Double-Decker Complexes on SWNT Surface observed by 
Ultra-High Vacuum Scanning Tunneling Microscopy (UHV-STM) at Low Temperatures

The STM measurements were conducted using OMICRONE scanning probe microscope with NanoNis software, Germany. All STM 
images were captured in a constant current mode under ultra-high vacuum and low temperature. The supramolecular structures of 
BDP-SWNT composite samples on HOPG surface were prepared using simple drop casting technique (i.e. drops of the dispersed 
composites in MeOH (ca. 5 µl) were casted onto a freshly cleaved HOPG surfaces) and fixed onto the cell. The sample was then left 
to dry at room temperature to be ready for observation. All the images were captured under ultra-high vacuum and low temperature 
(i.e. 80 K). To induce a tunneling current, a bias voltage was applied between sample and the tip. Image calibration was done using 
Gwyddion software.

Figure S4. Typical STM images for supramolecular structures of 3-SWNTcomposite on HOPG surface. a, 3-SWNTcomposite (It  = 0.1 nA, Vsample  =  0.7 V). b, 3-
SWNTcomposite (It = 0.05 nA, Vsample = 0.5 V). c, 3-SWNTcomposite (It = 0.1 nA, Vsample = 0.7 V). d, 3-SWNTcomposite (It = 0.05 nA, Vsample = 0.1 V). e, 3-
SWNTcomposite (It = 0.05 nA, Vsample = 0.08 V). f, 3-SWNTcomposite (It = 0.1 nA, Vsample = 0.5 V).
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Supramolecular Structures of Tb-Porphyrin Double-Decker Complexes on SWNT Surface observed by 
Atomic Force Microscopy (AFM) under Ambient Conditions  

AFM is used as an effective tool to investigate the supramolecular structures of 3 on SWNT surface, by casting a few drops of the 
dispersed composite in MeOH on a freshly cleaved HOPG surface.

a b c

d

e f g

1 μm 500 nm

200 nm 500 nm200 nm

200 nm

h

Figure S5. (a-c; e-g), Typical AFM images (topographic and phase) for supramolecular structures of 3-SWNTcomposite on HOPG surface under ambient 
conditions. d, h The topographic profiles for 3-SWNTcomposite, represent the average molecular height around 0.677 nm.
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Magnetic Measurements of prononated form 1, anionic form 2 and radical form 3 Complexes

Figure S6. Temperature dependence of in-phase (’M) and out-of-phase (”M) ac magnetic susceptibility of anionic form 2 (a, b), radical form 3 (c, d), under 2000 
Oe dc magnetic field. (e, f), Temperature dependence of in-phase (’M) and out-of-phase (”M) ac magnetic susceptibility of protonated form 1 under zero and 
2000 Oe dc magnetic fields shows that protonated form 1 doesn’t act as SMM.
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Magnetic Measurements of 2-SWNT and 3-SWNT composites

Figure S7. Temperature dependence of in-phase (’M) and out-of-phase (”M) ac magnetic susceptibility of 2-SWNT composite (a, b), 3-SWNT composite (c, d), 
under 0 Oe dc magnetic field.

Figure S8. Temperature dependence of in-phase (’M) and out-of-phase (”M) ac magnetic susceptibility of 2-SWNT composite (a, b), 3-SWNT composite (c, d), 
under 2000 Oe dc magnetic field.
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Magnetic Measurement of 1-SWNT composite

Figure S9. Hysteresis loop of the 1–SWNT composite at 1.8 K within ±20 kOe.

Magnetic Measurements of Purified-HiPCO SWNT
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Figure S10. Temperature dependence of the dc magnetic susceptibility measurements of purified-HiPCO SWNTs under a constant magnetic field of 2 kOe. 
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Figure S11. Temperature dependence of in-phase (’M) (a, c) and out-of-phase (”M) (b, d) ac magnetic susceptibility of purified-HiPCO SWNT, under zero and 
2000 Oe dc magnetic field. (e) Temperature dependence of the magnetic susceptibility of purified-HiPCO SWNT at different applied magnetic field between 50 Oe 
and 4 T for temperatures below 100 K, and up to 7 T at 300 K. (f) Field dependence of the magnetization of purified-HiPCO SWNT (from 50 Oe to 4 T) for 
temperatures below 100 K, and up to 7 T at 300 K. (g) Hysteresis loop of the purified-HiPCO SWNT at 1.8 K within ± 20 kOe. 
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SEM coupled EDS measuements of Purified-HiPCO SWNT

HiPCO SWNT

Figure S12. SEM coupled EDS measurement of purifed-HiPCO SWNT.
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