Functionalized Polycarbonates via Triphenylborane Catalyzed Polymerization-Hydrosilylation

Kori A. Andrea and Francesca M. Kerton*

Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada

fkerton@mun.ca

Table of Contents

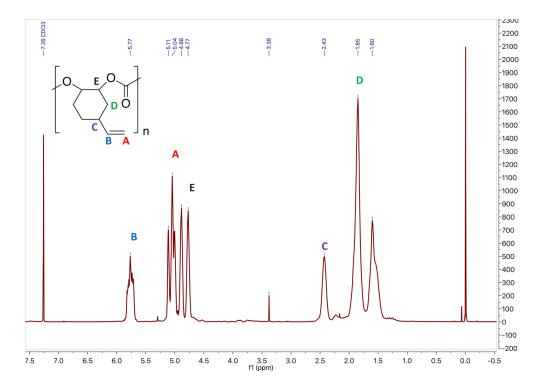
- 1. General experimental conditions
- 2. One-pot formation of silyl-modified polycarbonate
- 3. General procedure for terpolymerizations
- 4. Polydimethylsiloxane-functionalized polyvinylcyclohexene carbonate
- 5. **Figure S1** ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of isolated poly(vinylcyclohexenecarbonate) [PVCHC].
- 6. Figure S2

 ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of isolated PVCHC (top) and isolated silylated PVCHC (bottom). 10% of vinyl groups have been silylated (see Fig. S6 for expanded view).
- 7. Figure S3 ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of isolated PVCHC (top) and isolated silylated PVCHC (bottom).
- 8. Figure S4 HSQC 2-D NMR spectrum of isolated silylated PVCHC. x-axis shows ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃, 298 K) of isolated PVCHO.
- 9. Figure S5 HMQC 2-D NMR spectrum of isolated silylated PVCHC. x-axis shows ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows ²⁹Si NMR spectrum (60 MHz, CDCl₃, 298 K) of the isolated polymer. J(H-Si)= 10 Hz
- 10. Figure S6 Integrated 1 H NMR spectrum of silylated PVCHC. Normalized 1 Si Me_2 group, 6H, which corresponds 8.78 C $H_{(B)}$ residual vinyl groups. % silyl = m/(m+n) *100% = 1/(1+8.78) *100% = 10.2% functionalization.
- **11. Figure S7** GPC chromatogram showing light scattering trace of isolated PVCHC (at 5 mol% BPh₃) and silylated PVCHC from one-pot synthesis.
- **12. Figure S8** Mark-Houwink-Sakurada plot for isolated PVCHC (at 5 mol% BPh₃) and silylated PVCHC from one-pot synthesis.
- **13. Figure S9** Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1.
- **14. Figure S10** ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1.
- **15. Figure S11** Zoom ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1, showing isotacticity of PCHC region.
- **16. Figure S12** Zoom ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1, showing isotacticity of PPC region.

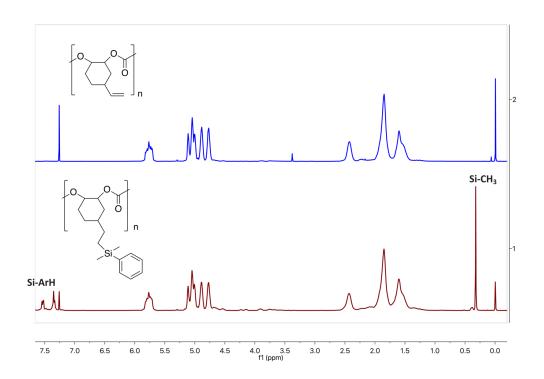
- **17. Figure S13** 3D React IR plot from Table 1, entry 1 showing major product is polycarbonate while cyclic carbonate as the minor product.
- **18. Figure S14** Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 2.
- 19. Figure S15 ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 2.
- **20.** Figure S16 Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 3.
- 21. Figure S17 ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 3.
- **22. Figure S18** Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/VCHO/CO₂ terpolymer from Table 1, entry 4.
- 23. Figure S19 ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/VCHO/CO₂ terpolymer from Table 1, entry 4.
- **24. Figure S20** Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of CHO/AGE/CO₂ terpolymer from Table 1, entry 5.
- 25. Figure S21 ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of CHO/AGE/CO₂ terpolymer from Table 1, entry 5.
- **26. Figure S22** Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of CHO/VCHO/CO₂ terpolymer from Table 1, entry 6.
- 27. Figure S23 ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of CHO/VCHO/CO₂ terpolymer from Table 1, entry 6.
- **28.** Figure S24 Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of VCHO/AGE/CO₂ terpolymer from Table 1, entry 7.
- **29. Figure S25** ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of VCHO/AGE/CO₂ terpolymer from Table 1, entry 7.
- **30.** Figure S26 Representative DOSY NMR spectra of obtained terpolymer (CO₂/CHO/AGE) from Table 1, entry 9. (¹H NMR 500 MHz, CDCl₃, 298 K)
- 31. Figure S27

 ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of pure Ph₂SiH₂ (top) and resulting functionalized terpolymer (CHO/VCHO/CO₂) (bottom). 36.4% of vinyl groups have been silylated (see Fig. S31 for expanded view).
- **32. Figure S28** ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of pure Ph₂SiH₂ (top) and resulting functionalized terpolymer (CHO/VCHO/CO₂) (bottom).
- **33. Figure S29** Refocused INEPT ²⁹Si NMR (60 MHz, CDCl₃, 298 K) spectrum of isolated PVCHC (top) and isolated silylated terpolymer (CHO/VCHO/CO₂) (bottom).
- 34. Figure S30 HSQC 2-D NMR spectrum of isolated silylated terpolmer (CHO/VCHO/CO₂). x-axis shows ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows ¹³C{¹H} NMR spectrum (75 MHz, CDCl₃, 298 K) of the isolated polymer.
- 35. Figure S31 Integrated 1 H NMR (300 MHz, (CD₃)₂CO, 298 K) spectrum of silylated PVCHC. Normalized 1 Si Ar_2 group, 10H, which corresponds 1.75 C $H_{(B)}$ residual vinyl groups. % silyl = m/(m+n) *100% = 1/(1+1.75) *100% = 36.4% functionalization.

36. Figure S32 HMQC 2-D NMR spectrum of isolated silylated terpolmer (CHO/VCHO/CO₂). x-axis shows ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows ²⁹Si NMR spectrum (60 MHz, CDCl₃, 298 K) of the isolated polymer. J(H-Si)= 300 Hz **37.** Figure S33 DSC of native terpolymer (CO₂/CHO/VCHO) from one pot reaction (blue) and after silane functionalization (red). Glass transition temperatures taken from the 3rd cycle. Mark-Houwink-Sakurada plot for isolated terpolymer (CHO/VCHO/CO₂) 38. Figure S34 and the corresponding silylated terpolymer. Figure S35 ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of pure DMS-HO3 (top) and 39. resulting functionalized PVCHC (bottom). 40. Figure S36 Refocused INEPT ²⁹Si NMR (60 MHz, CDCl₃, 298 K) spectrum of pure DMS-HO3 (top) and resulting functionalized PVCHC (bottom). 41. HMQC 2-D NMR spectrum of isolated DMS-HO3 functionalized PVCHC x-Figure S37 axis shows ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows ²⁹Si NMR spectrum (60 MHz, CDCl₃, 298 K) of the isolated polymer. J(H-Si)= 10 Hz 42. Figure S38 Stacked FTIR spectra of isolated PVCHC (red), DMS-HO3 (blue) and DMS-HO3 functionalized PVCHC (black) Mark-Houwink-Sakurada plot for isolated PVCHC (green) and DMS-HO3 43. Figure S39 functionalized PVCHC (red)

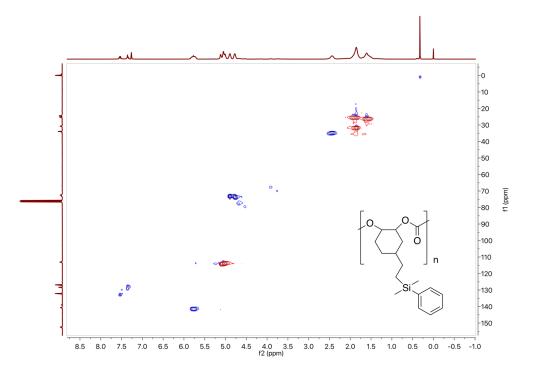

General experimental conditions. Unless otherwise stated, all experimental procedures were performed using an MBraun Labmaster glove box or under dry oxygen-free nitrogen using Schlenk techniques. Propylene oxide and bis(triphenyphosphine)iminium chloride (PPNCI) were purchased from Alfa Aesar. Cyclohexene oxide, vinyl cyclohexene oxide, allyl glycidol ether, epichlorohydrin and glycidol were purchased from Sigma Aldrich. All epoxides were dried over CaH₂ and distilled under vacuum. Phenyldimethylsilane, diphenylsilane and hydride terminated polydimethylsiloxane (DMS-H03) were purchased from Gelest and used without further purification. All solvents were dried and degassed using an MBraun Manual Solvent Purification system. Triphenylborane (BPh₃) was purchased from Strem Chemicals and used without further purification. Caution should be taken when operating high pressure equipment.

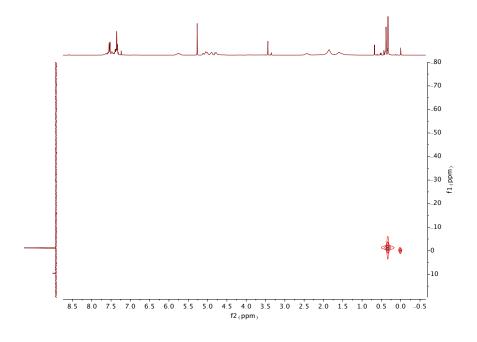
Instrumentation. ¹H and ¹³C{¹H}, ²⁹Si NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer at 25 °C (frequencies were ¹³C, 75.43 MHz; ²⁹Si, 59.60 MHz). All NMR spectra were obtained in CDCl₃ or (CD₃)₂CO purchased from Cambridge Isotope Laboratories, Inc. ¹H and ¹³C NMR spectra were referenced using the residual proton and ¹³C resonances of the solvent. Refocused INEPT ²⁹Si was referenced to external tetramethylsilane (TMS, δ = 0 ppm). All cyclization and copolymerization reactions were carried out in a 100 mL stainless steel reactor vessel (Parr Instrument Company) equipped with a silicon sensor (SiComp), mechanical stirrer and a heating mantel. For kinetic measurements, the Si sensor was connected to a ReactIR 15 base unit (Mettler-Toledo) through a DS silver-halide Fiber-to-Sentinel conduit. The vessel was baked at 100 °C under vacuum overnight prior to any experiment. Gel permeation chromatography (GPC) analysis was performed on a set-up consisting of a miniDawn TREOS light scattering detector, a Viscostar-II viscometer, and an Optilab T-rEX differential refractive index detector (Wyatt Technology) connected to an Agilent Infinity 1260 HPLC system equipped with two Phenogel 10³ Å 300 × 4.60 mm columns with THF as eluent. Samples were prepared in THF at a concentration of 4 mg mL⁻¹, filtered through a 0.2 µm syringe filter, and analyzed at a flow rate of 0.3 mL min⁻¹ at 25 °C. The values of dn/dc were calculated online (columns detached) assuming 100% mass recovery using the Astra 6 software package (Wyatt Technologies). Glass transition temperatures (Tg) were obtained on a Mettler Toledo DSC Stare system equipped with a Julabo FT 100 immersion cooling system for low temperatures (-100 °C +20 °C). Samples were weighed into 40 µL aluminum pans and exposed to 3 heating cycles from 0 to 200 °C at a rate of 10 °C min⁻¹, with a hold time of 2 min at both 0 °C and 200 °C in each cycle. The reported T_a values were determined using data from the third heating cycle.

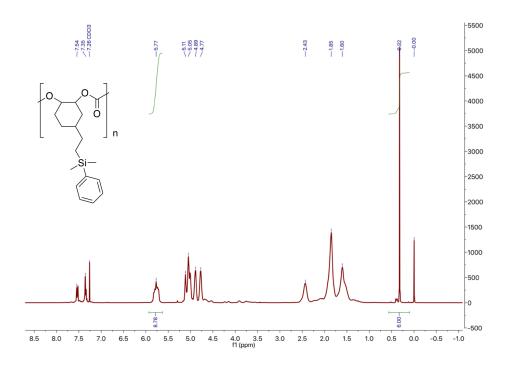

One-pot formation of silyl-modified polycarbonate. Stock solutions of BPh₃ (24.4 mg mL⁻¹) and PPNCI in toluene were combined and solvent was removed under vacuum. The solids were dissolved in 3 mL of dichloromethane and the solution was injected into the pressure vessel. The dichloromethane removed under vacuum, before the desired amount of the vinylcyclohexene oxide monomer was injected into the pressure vessel. The vessel was pressurized with CO₂, heated to the desired temperature and mechanically stirred for 24 h. After 24 h, the vessel was cooled to room temperature and slowly depressurized into a fumehood. A solution of phenyldimethylsilane (2.74 g, 20.1 mmol) in 20 mL of dichloromethane was injected into the vessel. The reaction mixture was heated to 40 °C for 4 days. However, after observing no change in signal intensity for phenyldimethylsilane, the temperature was increased to 60 °C for 24 h and IR bands corresponding to the silylated polymer grew in intensity (Figure 1). After 24 h, the vessel was cooled, the solution was taken out of the pressure vessel, concentrated and the polymer precipitated using cold, acidified methanol.

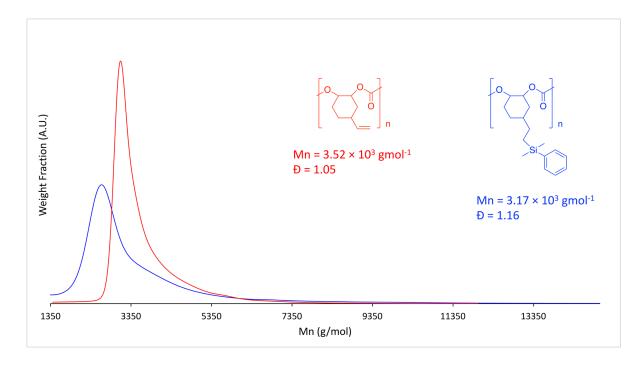
General procedure for terpolymerizations. Stock solutions of BPh₃ (24.4 mg mL⁻¹) and PPNCI in toluene were combined and the solvent was removed under vacuum. The solids were dissolved in 3 mL of dichloromethane and the solution was injected into the pressure vessel. The dichloromethane removed under vacuum, before the desired epoxide mixture was injected into the vessel. The vessel was pressurized with CO₂, heated to the desired temperature and mechanically stirred for 24 h. After 24 h, the vessel was cooled to room temperature and slowly depressurized into a fumehood. The crude product was dissolved in minimal dichloromethane and precipitated in cold acidified methanol.

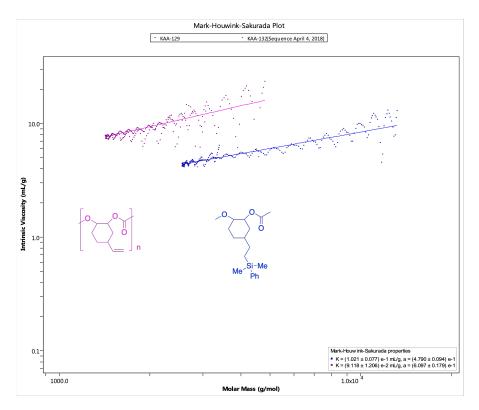
Polydimethylsiloxane-functionalized polyvinylcyclohexene carbonate. In a glovebox, purified PVCHC (0.20 g, 1.01 mmol vinyl units) and BPh₃ (0.012 g, 0.050 mmol) was dissolved in 10 mL of dichloromethane. To this, hydride terminated polydimethylsiloxane (2.52 g, 5.04 mmol) was added dropwise with stirring. The vial was sealed and allowed to stir overnight at room temperature. The crude produced was exposed to air, and precipitated in cold acidified methanol.


Figure S1. ¹H NMR (300 MHz, CDCl₃ 298 K) spectrum of isolated poly(vinylcyclohexenecarbonate) [PVCHC].


Figure S2. ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of isolated PVCHC (top) and isolated silylated PVCHC (bottom). 10% of vinyl groups have been silylated (see Fig. S6 for expanded view).


Figure S3. 13 C 1 H 13 NMR (125 MHz, CDCl 31 , 298 K) spectrum of isolated PVCHC (top) and isolated silylated PVCHC (bottom).


Figure S4. HSQC 2-D NMR spectrum of isolated silylated PVCHC. x-axis shows 1 H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows 13 C{ 1 H} NMR spectrum (75 MHz, CDCl₃, 298 K) of isolated PVCHC.


Figure S5. HMQC 2-D NMR spectrum of isolated silylated PVCHC. x-axis shows ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows ²⁹Si NMR spectrum (60 MHz, CDCl₃, 298 K) of the isolated polymer. J(H-Si)=10 Hz. Cross-peak at 0.0 ppm is TMS.

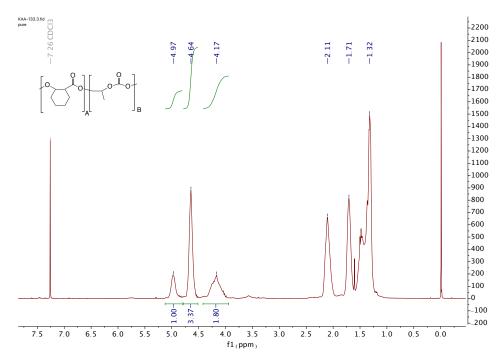
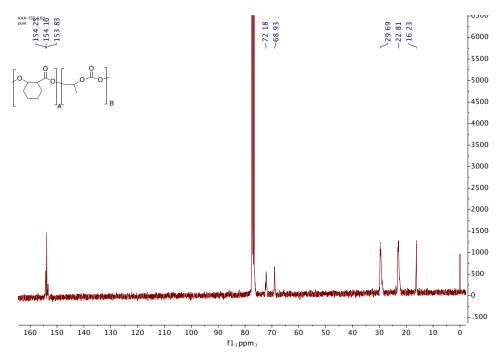
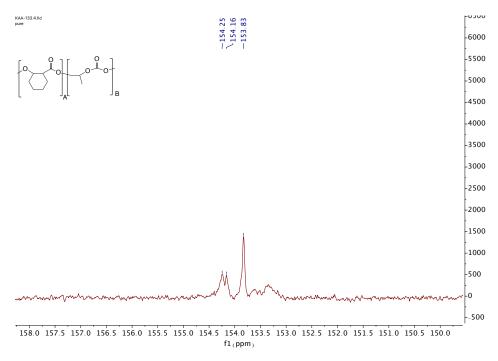
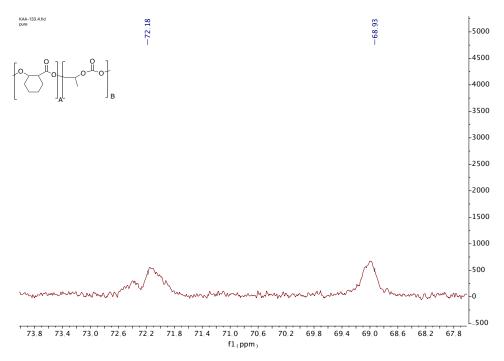
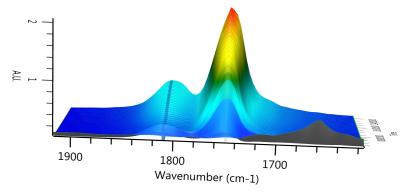

Figure S6. Integrated ¹H NMR spectrum of silylated PVCHC. Normalized 1 Si Me_2 group, 6H, which corresponds 8.78 $CH_{(B)}$ residual vinyl groups. % silyl = m/(m+n) *100% = 1/(1+8.78) *100% = 10.2% functionalization.

Figure S7. GPC chromatogram showing light scattering trace of isolated PVCHC (at 5 mol% BPh₃) and silylated PVCHC from one-pot synthesis.

Figure S8. Mark-Houwink-Sakurada plot for isolated PVCHC (at 5 mol% BPh_3) and silylated PVCHC from one-pot synthesis.

Figure S9. Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1.


Figure S10. $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1.

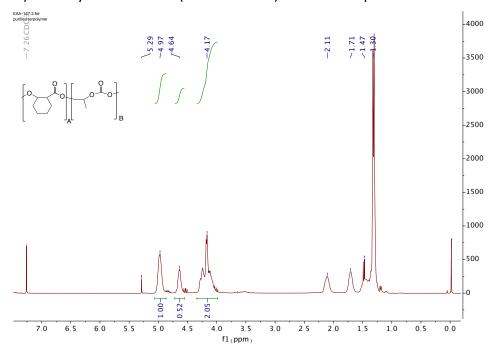

Figure S11. Zoom ¹³C{¹H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1, showing tacticity of PCHC region.

Figure S12. Zoom 13 C{ 1 H} NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 1, showing tacticity of PPC region.

Figure S13. 3D React IR plot from Table 1, entry 1 showing major product is polycarbonate ($v = 1750 \text{ cm}^{-1}$) while cyclic carbonate ($v = 1809 \text{ cm}^{-1}$) is the minor product.

Figure S14. Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 2.

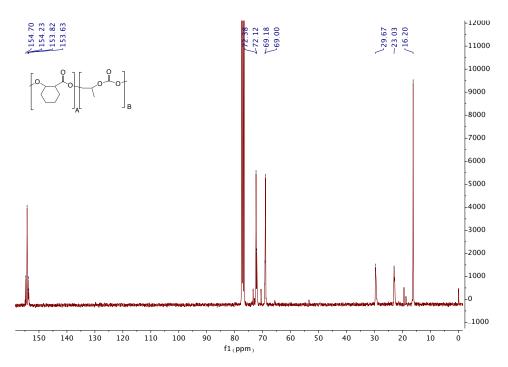
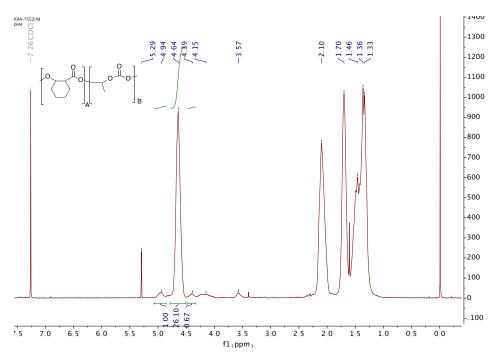



Figure S15. 13 C 1 H 13 NMR (125 MHz, CDCl $_{3}$ - d_{1} , 298 K) spectrum of PO/CHO/CO $_{2}$ terpolymer from Table 1, entry 2.

Figure S16. Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 3.

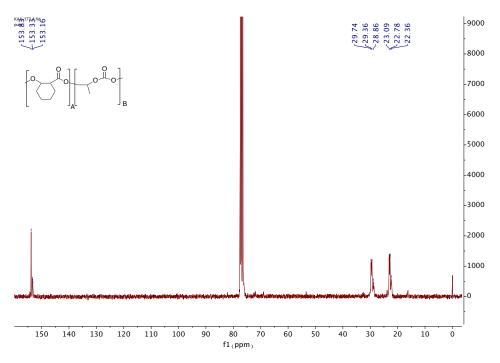
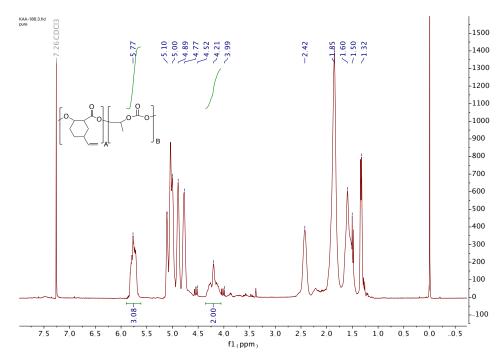



Figure S17. $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/CHO/CO₂ terpolymer from Table 1, entry 3.

Figure S18. Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of PO/VCHO/CO₂ terpolymer from Table 1, entry 4.

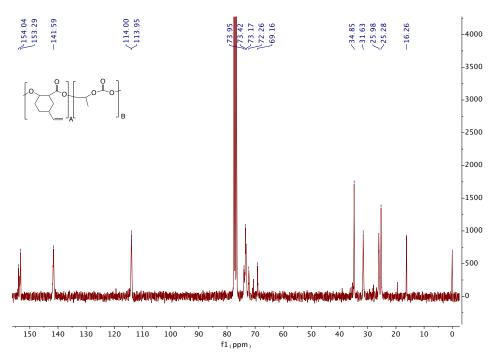
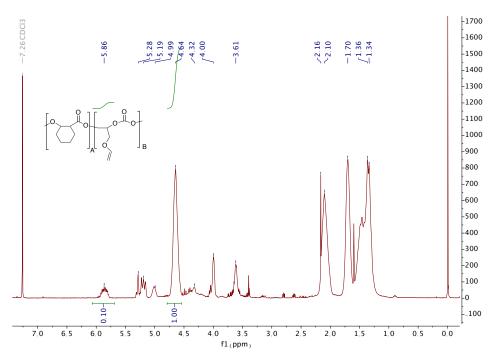



Figure S19. $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃, 298 K) spectrum of PO/VCHO/CO₂ terpolymer from Table 1, entry 4.

Figure S20. Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of CHO/AGE/CO₂ terpolymer from Table 1, entry 5.

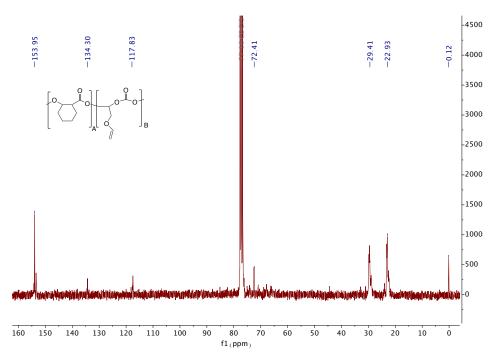
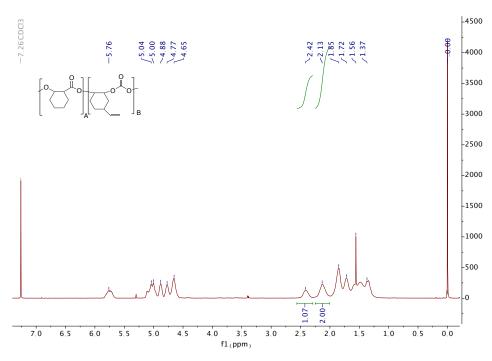



Figure S21. $^{13}C\{^1H\}$ NMR (125 MHz, CDCl₃, 298 K) spectrum of CHO/AGE/CO₂ terpolymer from Table 1, entry 5.

Figure S22. Integrated 1 H NMR (300 MHz, CDCl₃, 298 K) spectrum of CHO/VCHO/CO₂ terpolymer from Table 1, entry 6.

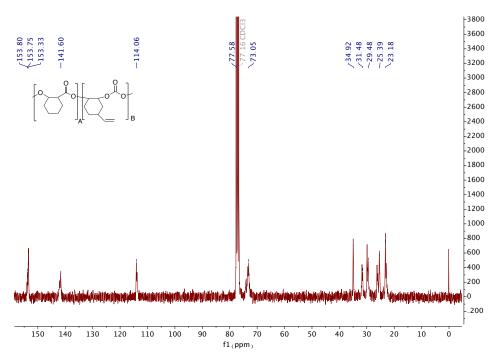
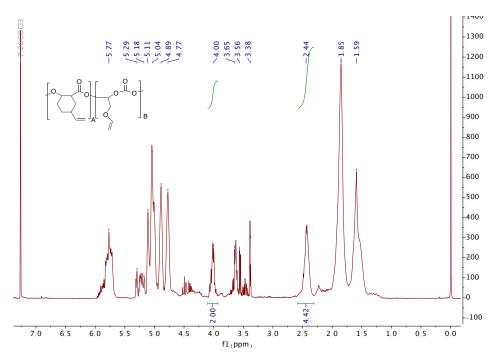



Figure S23. 13 C 1 H 13 NMR (125 MHz, CDCl₃, 298 K) spectrum of CHO/VCHO/CO₂ terpolymer from Table 1, entry 6.

Figure S24. Integrated ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of VCHO/AGE/CO₂ terpolymer from Table 1, entry 7.

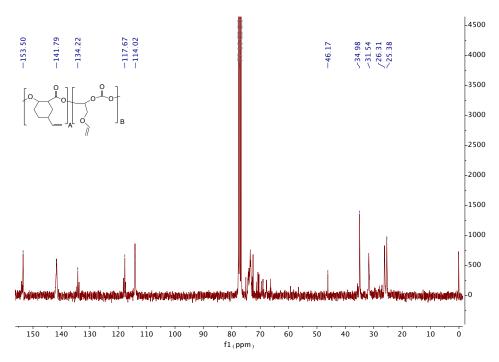
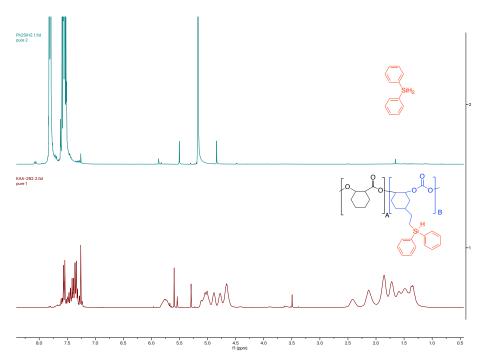
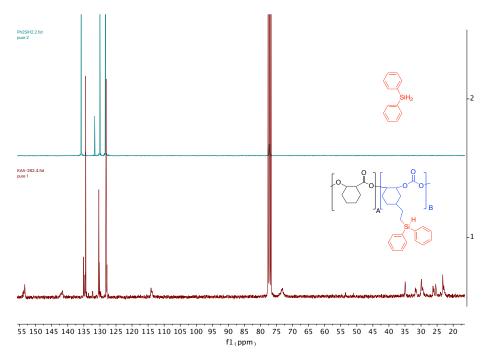
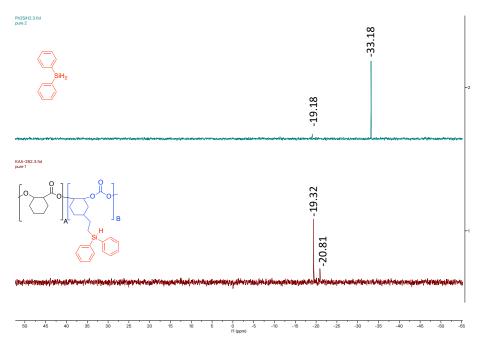
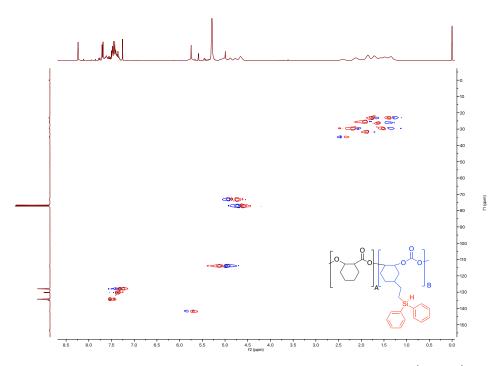
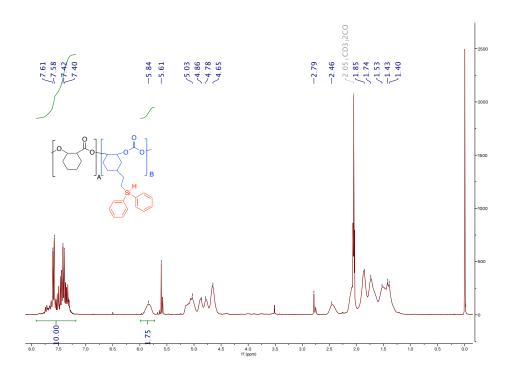



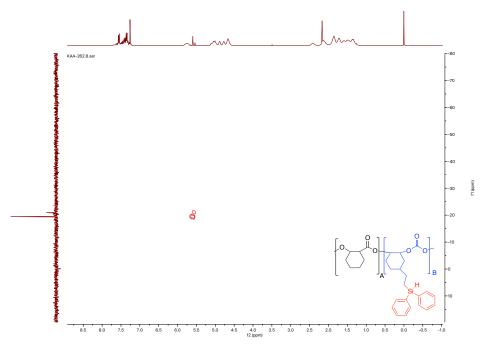
Figure S25. 13 C 1 H 13 NMR (125 MHz, CDCl₃, 298 K) spectrum of VCHO/AGE/CO₂ terpolymer from Table 1, entry 7.

Figure S26. Representative DOSY NMR spectra of obtained terpolymer ($CO_2/CHO/AGE$) from Table 1, entry 9. (1H NMR 500 MHz, $CDCl_3$, 298 K)

Figure S27. 1 H NMR (300 MHz, CDCl₃, 298 K) spectrum of pure Ph₂SiH₂ (top) and resulting functionalized terpolymer (CHO/VCHO/CO₂) (bottom). 36.4% of vinyl groups have been silylated (see Fig. S31 for expanded view).


Figure S28. $^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃, 298 K) spectrum of pure Ph₂SiH₂ (top) and resulting functionalized terpolymer (CHO/VCHO/CO₂) (bottom).


Figure S29. Refocused INEPT ²⁹Si NMR (60 MHz, CDCl₃, 298 K) spectrum of isolated PVCHC (top) and isolated silylated terpolymer (CHO/VCHO/CO₂) (bottom).

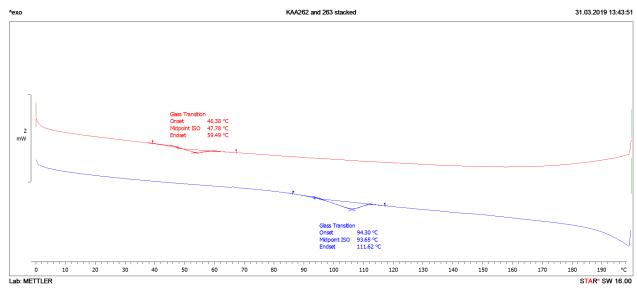
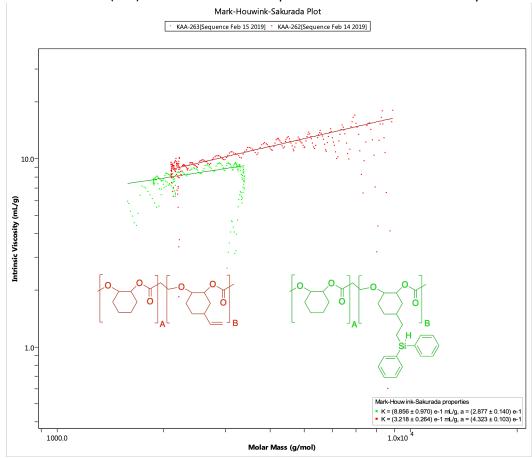
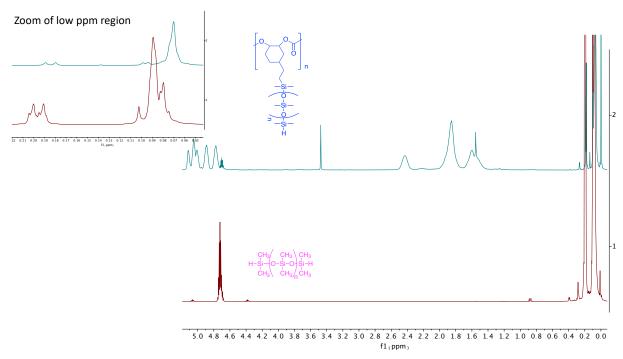
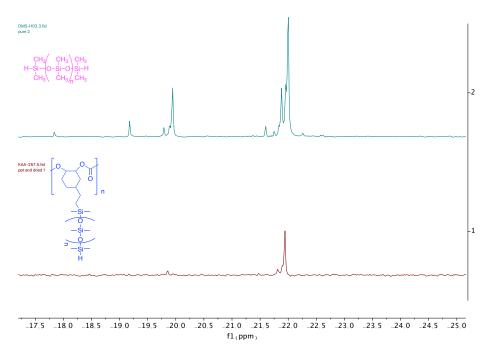
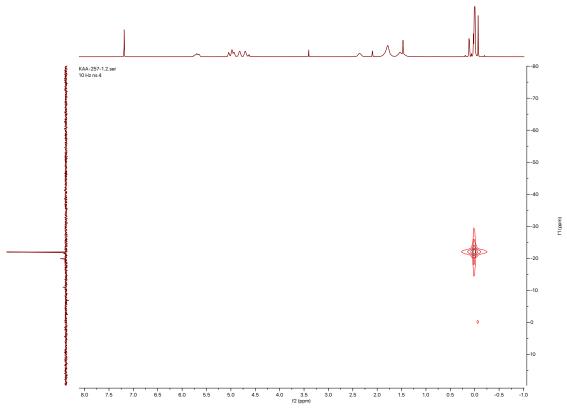

Figure S30. HSQC 2-D NMR spectrum of isolated silylated terpolmer (CHO/VCHO/CO₂). x-axis shows 1 H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows 13 C{ 1 H} NMR spectrum (75 MHz, CDCl₃, 298 K) of the isolated polymer.

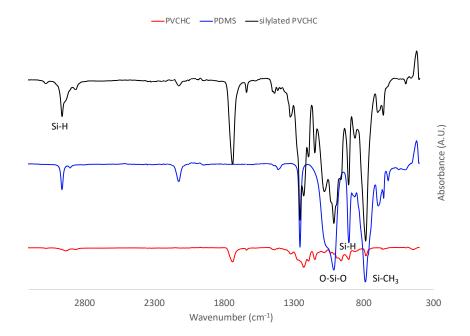
Figure S31. Integrated ¹H NMR (300 MHz, (CD₃)₂CO, 298 K) spectrum of silylated PVCHC. Normalized 1 Si Ar_2 group, 10H, which corresponds 1.75 C $H_{(B)}$ residual vinyl groups. % silyl = m/(m+n) *100% = 1/(1+1.75) *100% = 36.4% functionalization.

Figure S32. HMQC 2-D NMR spectrum of isolated silylated terpolmer (CHO/VCHO/CO₂). x-axis shows 1 H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows 29 Si NMR spectrum (60 MHz, CDCl₃- d_1 , 298 K) of the isolated polymer. J(H-Si)= 300 Hz

Figure S33. DSC of native terpolymer ($CO_2/CHO/VCHO$) from one pot reaction (blue) and after silane functionalization (red). Glass transition temperatures taken from the 3^{rd} cycle.


Figure S34. Mark-Houwink-Sakurada plot for isolated terpolymer ($CHO/VCHO/CO_2$) and the corresponding silylated terpolymer.


Figure S35. ¹H NMR (300 MHz, CDCl₃, 298 K) spectrum of pure DMS-HO3 (top) and resulting functionalized PVCHC (bottom).

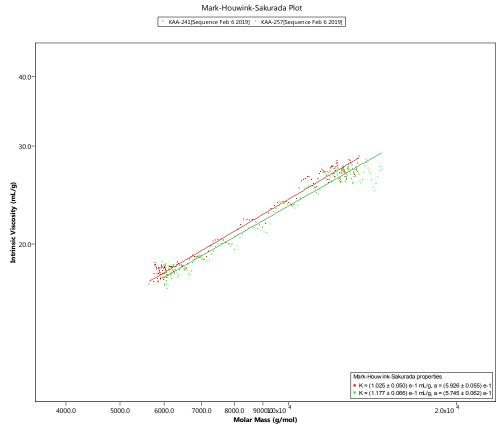

Figure S36. Refocused INEPT ²⁹Si NMR (60 MHz, CDCl₃, 298 K) spectrum of pure DMS-HO3 (top) and resulting functionalized PVCHC (bottom).

Figure S37. HMQC 2-D NMR spectrum of isolated DMS-HO3 functionalized PVCHC x-axis shows 1 H NMR spectrum (300 MHz, CDCl₃, 298 K) and y-axis shows 29 Si NMR spectrum (60 MHz, CDCl₃, 298 K) of the isolated polymer. J(H-Si)= 10 Hz

Figure S38. Stacked FTIR spectra of isolated PVCHC (red), DMS-HO3 (blue) and DMS-HO3 functionalized PVCHC (black)

Figure S39. Mark-Houwink-Sakurada plot for isolated PVCHC (green) and DMS-HO3 functionalized PVCHC (red)