Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

> Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Atomic layer deposition with rotary reactor for uniform

heterojunction photocatalyst, g-C₃N₄@TiO₂ core-shell structures

Eunyong Jang,^a Won Jun Kim,^b Dae Woong Kim, ^b Seong Hwan Hong,^b Ijaz Ali, ^b Young Min Park*^c and Tae Joo Park*^{ab}

^aDepartment of Advanced Materials Engineering, Hanyang University, Ansan 15588, Korea

^bDepartment of Materials Science & Chemical Engineering, Hanyang University, Ansan 15588, Korea

^cSurface Technology Group, Korea Institute of Industrial Technology, Incheon 31056, Korea

CORRESPONDING AUTHOR

*E-mail : tjp@hanyang.ac.kr, youngmin@kitech.re.kr

SUPPORTING INFORMATION CONTAINS:

Fig. S1-S2

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Figure S1. (a,c) SEM images of GTC with EDS point analysis on (b) TiO_2 agglomerates and (d) g-C₃N₄ sheet-like particles.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Figure S2. (a) UV-Vis diffuse reflectance spectra and (b) the band gap energies of GCN, GTs, GTC, and pure TiO_2 (P25). The following equation was used to calculate the band gap energies of each sample:

$$(\alpha hv)^{1/2} = A(hv - E_g),$$

where A, h, v, and E_g are the absorption coefficient, Planck constant, light frequency, and band gap energy, respectively. The y-axis value of $(\alpha h v)^{1/2}$ is plotted as a function of h^v , and the band gap energy was approximated by tangent intercept with the x-axis. As a result, the band gap energies of GCN and GTs are similar (~ 2.75 eV) and the band gap energy of bare TiO₂ (P25) is ~3.21 eV.