Electronic Supporting Information

Confined toluene within InOF-1: CO₂ capture enhancement

L. Pamela Garrido-Olvera,^a Jonathan E. Sanchez-Bautista,^a Daniel Alvarado-Alvarado,^a Bruno Landeros-Rivera,^{*b} J. Raziel Álvarez,^a Rubicelia Vargas,^{*b} Eduardo González-Zamora,^b Jorge Balmaseda,^c Hugo A. Lara-García,^d Ana Martínez,^c and Ilich A. Ibarra^{*a}

^a Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510 Ciudad de México, México.

^b Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340 Ciudad de México, México.

^c Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, México.

^d Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación científica s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.

1. Powder X-ray diffraction patterns of InOF-1

Fig. S1. Powder X-ray diffraction patterns of calculated (black); before experiments, as synthesized (blue); and afteradsorption experiments, without activation (red) InOF-1.

2. Adsorption isotherms for toluene

Fig. S2. Toluene adsorption isotherms at 298K (blue) and 308K (orange) for InOF-1 from *from %P/P0= 0 to 85. Squares* show adsorption phase, while circles show desorption phase

3. Derivation of the isosteric enthalpy of adsorption for toluene

Fig. S3. Viral fitting plot for the adsorption of toluene on InOF-1 at 298 K (left) and 308 K (right)

The isosteric heat of adsorption (ΔH_{ads}) was calculated with the help of toluene adsorption isotherms using the isosteric method, $Q_{"\#}$, by fitting a virial-type equation to both 298 and 308 K toluene adsorption isotherms. The following virial-type equation was used to fit both isotherms:

$$\ln \overset{n}{\underset{p}{\&}}^{n}) = A_{-} + A_{/}n + A_{0}n^{0} \cdots$$

Where p is the pressure, n is the amount absorbed by the material InOF-1, and $A_{-}, A_{/}$, etc. are the virial coefficients, A_{0} and higher terms can be ignored.

A plot of $\ln 3\frac{4}{5}6$ versus *n* should give a straight line at low surface coverage. Once obtained the plots, $Q_{\#}$ was calculated with the help of the Clausius-Clapeyron equation, obtaining a value of 46.81 kJ mol⁻¹:

$$Q_{"\#} = R 3_{\frac{8_{9}*8}{9};}^{\frac{8_{9}*8}{5}} 6 \ln 3_{>}^{\frac{8_{9}}{5}}$$

4. Theoretical calculations

Fig. S4. Pore channel (*top*) and close up (*bottom*) views of an additional optimized structure of the toluene molecule (shown in blue) adsorbed within InOF-1 in a parallel displaced geometry. Pink, red, grey and white colors represent indium, oxygen, carbon and hydrogen atoms, correspondingly. Intermolecular distances are depicted in black (Å).

Table S1. Electron density ($\rho_{@}$), its laplacian ($\nabla^{0}\rho_{@}$), the kinetic and potential energy densities ratio $|V_{@}/G_{@}|$ and the electron energy density ($H_{@}$) values evaluated at the bond critical points for each contact found in the toluene@InOF-1 system. All values (a.u.) are indicative of non-covalent interactions. The strongest H…H interaction is highlighted in black.

Interaction	ρ_{a}	$ abla^0 ho_{artial}$	V_{a}/G_{a}	H _@
C…C	0.0075	0.0271	0.7	0.0014
С…С	0.0076	0.0271	0.7	0.0014
C…C	0.0076	0.0285	0.7	0.0015
C…O	0.0080	0.0286	0.7	0.0015
Н…Н	0.0089	0.0294	0.8	0.0013
Н…Н	0.0080	0.0278	0.7	0.0014
н…н	0.0152	0.0491	0.9	0.0014
С-Н…О	0.0083	0.0297	0.7	0.0014
С-Н…О	0.0071	0.0241	0.7	0.0014
С-Н…О	0.0017	0.0064	0.7	0.0015