Supporting Information

Converse Transitions between Micelles and Vesicles of Pyrrolidone Based AIE Amphiphilic

Copolymers in Polar and Apolar Solvents

Xiaolong He, Beibei Wang, Xuefeng Li*, Jinfeng Dong*

Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education,

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

*Corresponding author: lixuefeng@whu.edu.cn (Xuefeng Li)

jfdong@whu.edu.cn (Jinfeng Dong)

Figure S1. (a) Representative ¹H NMR and (b) DMF GPC of PNMP macro-CTAs.

 Table S1. Summary of monomer conversions, mean degrees of polymerization and GPC

 molecular weights for two PNMP macro-CTAs.

Target DP	¹ H NMR	Actual DP by	GPC	
	Conversion %	¹ H NMR	$M_{\rm n}$ (g/mol)	$M_{ m w}/M_{ m n}$
PNMP ₃₇	99	35	5000	1.03
PNMP ₅₅	98	50	7100	1.03

Scheme S1 Synthesis of TPE.

Figure S2. ¹H NMR of TPE (δ, CDCl₃): 5.20 and 5.68 (2H, CH₂=CH-), 6.63 (1H, CH₂=CH-),

6.96-7.20 (19H, benzene ring skeleton).

Figure S3. Mass spectrum of TPE. MS (EI), *m/z*: 358 (calcd. for C₂₈H₂₂ 358).

Figure S4. (a) Representative ¹H NMR and (b) GPC of PNMP₃₅-*b*-P(LMA_{*y*}-*co*-TPE_{*z*}).

Figure S5. TEM images of 1 wt% PNMP₃₅-*b*-P(LMA₁₈-*co*-TPE_{1.9}) (a) and PNMP₃₅-*b*-P(LMA₃₈*co*-TPE_{4.7}) (b) aqueous solutions, respectively.

Figure S6. TEM images of 1 wt% PNMP₃₅-b-P(LMA₂₄-co-TPE_{2.7}) (a) and PNMP₃₅-b-P(LMA₃₈-

co-TPE_{4.7}) (b) in n-dodecane, respectively.

Figure S7. (a) Representative ¹H NMR and (b) chloroform GPC of PNMP₅₀-*b*-PLMA₁₀. TEM image of 1 wt% PNMP₅₀-*b*-PLMA₁₀ (c) and DLS result of 0.1 wt% PNMP₅₀-*b*-PLMA₁₀ (d) in water at 25 °C, respectively.

Figure S8. TEM images of 1 wt% PNMP₃₅-*b*-P(LMA_y-*co*-TPE_z)/PNMP₅₀-*b*-PLMA₁₀ binary system in aqueous solution with a constant PNMP₃₅-*b*-P(LMA_y-*co*-TPE_z) content of 40 wt%, and images (a) ~ (c) correspond to PNMP₃₅-*b*-P(LMA₂₄-*co*-TPE_{2.7}), PNMP₃₅-*b*-P(LMA₃₈-*co*-TPE_{4.7}) and PNMP₃₅-*b*-P(LMA₅₅-*co*-TPE_{6.3}), respectively. Bars represent 100 nm.