Data analysis

The initial adsorption rate (h) equation was as follows.

$$h = k_2 q_e^2$$

The normalized standard deviation (NSD) and average relative error (ARE), indicating the validity of kinetic models, are defined as:

$$NSD = 100 \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left[\frac{(q_{ti}^{exp} - q_{ti}^{cal})}{q_{ti}^{exp}} \right]^2}$$
$$ARE = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{(q_{ti}^{exp} - q_{ti}^{cal})}{q_{ti}^{exp}} \right|$$

where q_{ti}^{exp} and q_{ti}^{cal} (mg/g) are experimental and calculated Cr(VI) adsorbed on MnS@biochar at time *t* and *N* is the number of measurements made. The smaller NSD and ARE values reveal more accurate estimation of q_t values. The governing equations of the three models are integrated by applying the boundary conditions q = 0 at t = 0 The Marquardt's percent standard deviation (MPSD) and the hybrid error function (HYBRID) indicated the validity of adsorption isotherm:

$$MPSD = 100 \sqrt{\frac{1}{N - P} \sum_{i=1}^{N} \left(\frac{q_{ei}^{exp} - q_{ei}^{cal}}{q_{ei}^{exp}}\right)^{2}}$$
$$HYBRID = \frac{100}{N - P} \sum_{i=1}^{N} \left|\frac{(q_{ei}^{exp} - q_{ei}^{cal})^{2}}{q_{ei}^{exp}}\right|$$

where q_{ei}^{exp} is the data from the batch experiment *i* (mg/g), q_{ei}^{cal} is the estimated value from the isotherm for corresponding q_{ei}^{exp} (mg/g), *N* is the number of observations in experimental isotherm, and *P* is the number of parameters in regression model. The smaller MPSD and HYBRID values indicate more accurate estimation of q_e values.

Figures

Fig. S1 Cr species percentage as the function of pH (Condition: $C_{Cr(VI)}$ =150 mg/L)

Fig. S2 The pseudo first-order kinetic model fitting line

Figure S3 The fitting results of adsorption isotherms models (a: Langmuir model, b:

Freundlich model, c: Dubinin-Radushkuvich model)

Figure S4 EDS analysis of F-MnS@biochar

Fig. S5 The specific surface areas (a) and porous structures (b) of MnS, biochar, and

F-MnS@biochar

Fig. S6 ζ-potentials of biochar, MnS, and F-MnS@biochar

Fig. S7 MnS hydrolysis as the function of pH (Condition: C_{MnS} =1.5 g/L)

Tables

Table S1 The fitting parameters of pseudo first-order model and pseudo second-order model used

	10	i biintatatiing et	() i uusoipu	on Americ auta		
Model	k_1/k_2	q_e	h_1/h_2	R^2	NSD	ARE
PFO	0.0035	22.83	0.08	0.925	62.1	55.3
PSO	0.0306	98.04	9.02	0.999	11.6	8.7
	Table S2 The	Cr(VI) remova	amounts of	different biocha	r materials	
Material		Qe	Qe			
CMC-FeS@b	iochar	130.5	mg/g	1		
ZVI-biochar		17.8 1	ng/g	2		
Fe-biochar	e-biochar 67.44 mg/g		mg/g	3		
β-FeOOH/SY	SeOOH/SYBK 37.04 g kg ⁻¹		g kg ⁻¹	4		
Fe3O4@SiO2	@SiO2-NH2-biochar 27.2 mg/g		ng/g	5		
Fe3O4@biochar 25.27 mg/g		mg/g	6			

for simulating Cr(VI) adsorption kinetic data

Temperaure	Model	Parameters	MPSD	HYBRID
15° C	Langmuir	q_m =117.65; b=0.3091; R ² =0.999	9.51	4.88
	Freundlich	$n=4.3159; k_2=42.53; R^2=0.923$	44.75	21.91
	Redlich-Peterson	K_R =93.34; $\alpha = 1.27$; $\beta = 0.9083$; R^2 =0.977	4.86	1.48
	Dubinin-Radushkevich	$q_m = 97.51 \text{ mg/g}; K_D = 0.0073; \text{ E}= 8.28$	38.95	17.24
25° C	Langmuir	q_m =119.05; b=0.7850; R ² =0.999	17.35	3.26
	Freundlich	$n=7.7220; k_2=67.94; R^2=0.907$	38.26	18.73
	Redlich-Peterson	K_R =23178; α = 310; β = 0.8985; R^2 =0.982	3.17	0.63
	Dubinin-Radushkevich	$q_m = 99.48 \text{ mg/g}; K_D = 0.0068; \text{E}= 8.57$	42.33	15.45
35° C	Langmuir	q_m =121.95; b=1.0933; R ² =0.99109	14.02	5.23
	Freundlich	<i>n</i> =9.7656; <i>k</i> ₂ =79.30; <i>R</i> ² =0.914	40.55	19.28
	Redlich-Peterson	K_R =362792; α = 4280; β = 0.9207; R^2 =0.981	5.42	2.19
	Dubinin-Radushkevich	$q_m = 103.54 \text{ mg/g}; K_D = 0.0030; \text{ E} = 12.91$	40.59	16.23

Table S3 Regression parameters of adsorption isotherm data of Cr(VI) onto MnS@biochar by

Langmuir, Freundlich, Redlich-Peterson, and Dubinin-Radushkevich models

Table S4 XPS results of F-MnS@biochar, and R-MnS@biochar (%)

Samulas	Ols				S2p		
Samples	C-O	-OH	C=O	M=O	S(VI)/S(IV)	$S(-II)^*$	S(-II)#
F-MnS@biochar	22.3	60.8	16.9	-	7.6	12.8	79.6
R-MnS@biochar	-	42.7	35.6	21.7	15.3	11.9	72.8
	Mn2p			Cr2p			
Samplas		Mn2p				Cr2p	
Samples	Mn(II)	Mn2p Mn(III)	Mn(IV)	Me=O	Cr ₂ O ₃	Cr2p Cr ₂ S ₃	Cr(VI)
Samples F-MnS@biochar	Mn(II) 91.6	Mn2p Mn(III)	Mn(IV) 8.4	Me=O	Cr ₂ O ₃	Cr2p Cr ₂ S ₃	Cr(VI)

References:

- Lyu H, Tang J, Huang Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite, Chemical Engineering Journal, 2017, 322:516-524.
- Dong H, Deng J, Xie Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 2017, 332:79-86.
- Duan S, Ma W, Pan Y, et al. Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (VI) removal from solution. Journal of the Taiwan Institute of Chemical Engineers, 2017: S1876107017303516.

- Yang T, Meng L, Han S, et al. Simultaneous reductive and sorptive removal of Cr(vi) by activated carbon supported β-FeOOH. RSC Advances, 7.
- Shi S, Yang J, Liang S, et al. Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe₃O₄@SiO₂-NH₂ particles. Science of the Total Environment, 2018, 628–629: 499-508.
- Zhang X, Lv L, Qin Y, et al. Removal of aqueous Cr(VI) by a magnetic biochar derived from, Melia azedarach, wood. Bioresource Technology, 2018, 256:1-10.