## SUPPORTING INFORMATION

# Palygorskite-anchored Pd complex catalyzed the coupling reactions of pyrimidin-2-yl sulfonates 

Huiying Zhan, *a Rongrong Zhou, ${ }^{a}$ Xudong Chen, ${ }^{a}$ Quanlu Yang,*a Hongyan Jiang, ${ }^{\text {b }}$ Qiong Su, ${ }^{\text {b }}$ Yanbin<br>Wang, ${ }^{\text {b }}$ Jia Li, ${ }^{\text {b }}$ Lan $\mathrm{Wu}^{\mathrm{b}}$ and Shang Wu* ${ }^{\text {b }}$<br>\section*{Contents}<br>1. General Information<br>..... S1<br>2. General procedure.<br>..... S3<br>3. Characterization data for the products<br>..... S8<br>4. NMR Spectra for products.<br>..... S18

## 1. General Information

All reactions were carried out under an atmosphere of air atmosphere with dry solvents in flame-dried glassware unless otherwise noted. Binding energy was referred to $\mathrm{C}_{1 \mathrm{~s}}(284.80 \mathrm{eV})$. FTIR spectroscopy patterns were obtained on an FT/IR-660 Plus system (Jasco, Tokyo, Japan). The samples were mixed with KBr powders and pressed into a disk suitable for FTIR measurement. The morphologies of the catalyst were examined with field emission scanning electron microscopy (FESEM, Ultra Plus, Carl Zeiss). Elemental analysis of the photocatalyst was conducted by an energydispersive X-ray spectrometer (EDX) attached to the scanning electron microscope. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data analyses were performed with a Varian Mercury plus-400 instrument unless otherwise specified. $\mathrm{CDCl}_{3}$ as solvent and tetramethylsilane (TMS) as the internal standard were employed.

Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum as 0.00 ppm . The data of ${ }^{1} \mathrm{H}$ NMR was reported as follows: chemical shift, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet and $\mathrm{br}=\mathrm{broad})$, coupling constant $(J$ values $)$ in Hz and integration. Chemical shift for ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ppm from TMS using the central peak of $\mathrm{CDCl}_{3}$ (77.0ppm) as the internal standard. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Melting points were measured with an XT-4 apparatus. Reactions were monitored by TLC on silica gel plates (GF254), and the analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel plates. N -(pyrimidin-2-yl)-1H-indoles were prepared according to literature procedures ${ }^{1}$. Palladium (II) acetate, alkynes, carboxylic acids, $\mathrm{Cu}_{2} \mathrm{O}$, P ligands and solvents were all purchased from J\&K Scientific Ltd.All other reagents were purchased from commercial sources and used as received.

[^0]
## 2. General procedure

### 2.1 General procedure for the Suzuki coupling reaction



Schlenk tube ( 10 mL ) was equipped with a magnetic stir bar, and $\mathbf{1 a}(0.25 \mathrm{mmol})$, 2a (1.5 equiv, 0.375 mmol ), $\mathrm{PPh}_{3}$ ( $20 \mathrm{~mol} \%$ ), $\mathrm{PGS}-\mathrm{APTES}-\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{mg}, \mathrm{Pd} 0.35$ $\mathrm{mol} \%$ ), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv. 0.5 mmol ), 1,4-dioxane ( 5 mL ) were added under Ar. The mixture was stirred in at $110^{\circ} \mathrm{C}$ for 24 h . After the reaction was finished, the mixture was concentrated under vacuum to remove 1,4-dioxane, and the residue was purified by chromatography on silica gel to afford the product.

### 2.2 General procedure for the Sonogashira coupling reaction



The Schlenk tube ( 10 mL ) was equipped with a magnetic stir bar, and $\mathbf{1 a}(0.25 \mathrm{mmol})$, 4a ( 0.50 mmol ), $\mathrm{K}_{3} \mathrm{P} 0_{4}$ (3 equiv.), CuTC ( $10 \mathrm{~mol} \%$ ), DPE-Phos ( $2 \mathrm{~mol} \%$ ), PGS-APTES-Pd $(\mathrm{OAc})_{2}(\mathrm{Pd} 0.463 \mathrm{wt} \%, 0.0435 \mathrm{mmol} / \mathrm{g}), 1,4$-dioxane $(5 \mathrm{~mL})$ were added under Ar. The mixture was stirred in at $110{ }^{\circ} \mathrm{C}$ for 48 h . After the reaction was finished, the mixture was concentrated under vacuum to remove 1,4-dioxane, and the residue was purified by chromatography on silica gel to afford the product.

### 2.3 General procedure for the $\mathbf{C}-\mathbf{N}$ coupling reaction



Schlenk tube ( 10 mL ) was equipped with a magnetic stir bar, and $\mathbf{1 a}(0.25 \mathrm{mmol}), \mathbf{6 a}$ $(0.38 \mathrm{mmol}), \mathrm{PPh}_{3}(20 \mathrm{~mol} \%)$, PGS-APTES-Pd(OAc)${ }_{2}(20 \mathrm{mg}, \mathrm{Pd} 0.35 \mathrm{~mol} \%)$, $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0 equiv. 0.5 mmol ), 1,4-dioxane ( 5 mL ) were added under Ar. The mixture was stirred in at $110{ }^{\circ} \mathrm{C}$ for 24 h . After the reaction was finished, the mixture was concentrated under vacuum to remove 1,4-dioxane, and the residue was purified by chromatography on silica gel to afford the product.

### 2.4 Optimization for the conditions of Suzuki reaction

|  | Table S1. Optimization for the conditions of Suzuki reaction ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry | Catalyst |  | Base | Ligand | Solvent | Yield ${ }^{\text {b }}$ |
| 1 | PGS-APTES-Pd(OAc) ${ }_{2}$ | ( 20 mg ) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | DPE-Phos | dioxane | 72 \% |
| 2 | PGS-APTES-Pd(OAc) $2_{2}$ | $(20 \mathrm{mg})$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | X-Phos | dioxane | 75 \% |
| 3 | PGS-APTES-Pd(OAc) $2_{2}$ | ( 20 mg ) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | dioxane | 88 \% |
| 4 | PGS-APTES-Pd(OAc) $2_{2}$ | $(20 \mathrm{mg})$ | NaOAc | $\mathrm{PPh}_{3}$ | dioxane | 16 \% |
| 5 | PGS-APTES-Pd(OAc) ${ }_{2}$ | ( 20 mg ) | TBAB | $\mathrm{PPh}_{3}$ | dioxane | trace |
| 6 | PGS-APTES-Pd(OAc) ${ }_{2}$ | ( 20 mg ) | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | $\mathrm{PPh}_{3}$ | dioxane | 32 \% |
| 7 | PGS-APTES-Pd(OAc) $2_{2}$ | ( 20 mg ) | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | $\mathrm{PPh}_{3}$ | dioxane | 37 \% |
| 8 | PGS-APTES-Pd(OAc) $2_{2}$ | ( 20 mg ) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | toluene | trace |
| 9 | PGS-APTES-Pd(OAc) $2_{2}$ | ( 20 mg ) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | $\mathrm{CCl}_{4}$ | --- |
| 10 | PGS-APTES-Pd(OAc) $2_{2}$ | ( 10 mg ) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | dioxane | 57 \% |
| 11 | PGS-APTES-Pd(OAc) $2_{2}$ | $(15 \mathrm{mg})$ | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | dioxane | 68 \% |
| 12 | PGS-APTES-Pd(OAc) $2_{2}$ | ( 25 mg ) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | dioxane | 88 \% |
| 13 | PGS (20 mg ) |  | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | dioxane | --- |
| 14 | - |  | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | --- | dioxane | --- |
| 15 | PGS-APTES-Pd(OAc) $2_{2}$ | ( 20 mg ) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | --- | dioxane | 15 \% |
| 16 | $\mathrm{Pd}(\mathrm{OAc}) 2$ (0.35 mo | 1\%) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | dioxane | 14 \% |

${ }^{\text {a }}$ Reaction condition: 1a ( 0.25 mmol ), 2a ( 1.5 equiv. ), ligands ( 20 or $6 \mathrm{~mol} \%$ ), base ( 2.0 equiv. ), catalyst ( $\mathrm{Pd} 0.463 \mathrm{wt} \%$ ), solvent ( 5 mL ), $110{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield of 3 a by column chromatography.

### 2.5 Optimization for the conditions of Sonogashira reaction

Table S2. Optimization for the conditions of Sonogashira reaction a

$1 \mathbf{a} \quad 4 \mathbf{a}$

| Entry | Catalyst |  | Ligands | $[\mathrm{Cu}]$ | Solvent | Time | Yield ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | PGS-APTES-Pd(OAc) ${ }_{2}$ | (30 mg) | X-Phos | CuI | Dioxane | 48 h | $13 \%$ |
| 2 | PGS-APTES-Pd(OAc) $2_{2}$ | (30 mg) | X-Phos | $\mathrm{Cu}_{2} \mathrm{O}$ | Dioxane | 48 h | 26 \% |
| 3 | PGS-APTES-Pd(OAc) $2_{2}$ | (30 mg) | X-Phos | CuTC | Dioxane | 48 h | 59 \% |
| 4 | PGS-APTES-Pd(OAc) $2_{2}$ | $(30 \mathrm{mg})$ | X-Phos | $\begin{gathered} \mathrm{Cu}(\mathrm{OA} \\ \mathrm{c})_{2} \end{gathered}$ | Dioxane | 48 h | n.d. ${ }^{\text {c }}$ |
| 5 | PGS-APTES-Pd(OAc) $2_{2}$ | (30 mg) | $\mathrm{PPh}_{3}$ | CuTC | Dioxane | 48 h | 22 \% |
| 6 | PGS-APTES-Pd(OAc) ${ }_{2}$ | $(30 \mathrm{mg})$ | DPE-Phos | CuTC | Dioxane | 48 h | 81 \% |
| 7 | PGS-APTES-Pd(OAc) ${ }_{2}$ | $(30 \mathrm{mg})$ | DPE-Phos | CuTC | Toluene | 48 h | 51 \% |
| 8 | PGS-APTES-Pd(OAc) $2_{2}$ | $(30 \mathrm{mg})$ | DPE-Phos | CuTC | Xylene | 48 h | 67 \% |
| 9 | PGS-APTES-Pd(OAc) $2_{2}$ | $(10 \mathrm{mg})$ | DPE-Phos | CuTC | Dioxane | 48 h | 33 \% |
| 10 | PGS-APTES-Pd(OAc) $2_{2}$ | $(20 \mathrm{mg})$ | DPE-Phos | CuTC | Dioxane | 48 h | 80 \% |
| 11 | PGS-APTES-Pd(OAc) $2_{2}$ | $(20 \mathrm{mg})$ | DPE-Phos | CuTC | Dioxane | 12 h | 32 \% |
| 12 | PGS-APTES-Pd(OAc) $2_{2}$ | $(20 \mathrm{mg})$ | DPE-Phos | CuTC | Dioxane | 24 h | 68 \% |
| 13 | PGS-APTES-Pd(OAc) $2_{2}$ | $(20 \mathrm{mg})$ | DPE-Phos | CuTC | Dioxane | 72 h | 79 \% |
| 14 | - |  | - | CuTC | Dioxane | 48 h | n.d. ${ }^{\text {c }}$ |
| 15 | PGS-APTES-Pd(OAc) ${ }_{2}$ | (20 mg) | - | CuTC | Dioxane | 48 h | 18 \% |

${ }^{\text {a }}$ Reaction condition: 1a ( 0.25 mmol ), $4 \mathrm{a}(0.50 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (equiv.), $[\mathrm{Cu}](10 \mathrm{~mol} \%$ ), ligands ( $6 \mathrm{~mol} \%$ $\mathrm{PPh}_{3}, 2 \mathrm{~mol} \%$ DPE-Phos or X-phos), PGS-APTES-Pd(OAc) $)_{2}(\mathrm{Pd} 0.463 \mathrm{wt} \%, 0.0435 \mathrm{mmol} / \mathrm{g})$, solvent ( 5 mL ); temperature: $110^{\circ} \mathrm{C}$ for dioxane and toluene as solvent, $140^{\circ} \mathrm{C}$ for xylene. ${ }^{\mathrm{b}}$ Isolated yield of 5 a by column chromatography. ${ }^{\mathrm{c}}$ n.d. $=$ No reaction was detected by TLC and ${ }^{1} \mathrm{H}$ NMR.

### 2.6 Optimization for the conditions of C-N coupling reactions

Table S3. Optimization for the conditions of C-N coupling reactions a


| Entry | Base | Ligands | Yield $^{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| 1 | DBU | $\mathrm{PPh}_{3}$ | $13 \%$ |
| 2 | $\mathrm{Et}_{3} \mathrm{~N}$ | $\mathrm{PPh}_{3}$ | $45 \%$ |
| 3 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | $\mathrm{PPh}_{3}$ | $21 \%$ |
| 4 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | $\mathrm{PPh}_{3}$ | $17 \%$ |
| 5 | $\mathrm{~K}_{3} \mathrm{PO}_{4}$ | $\mathrm{DPE}^{2}-\mathrm{Phos}$ | $67 \%$ |
| 6 | $\mathrm{~K}_{3} \mathrm{PO}_{4}$ | $\mathrm{X}-\mathrm{Phos}^{2}$ | $54 \%$ |
| 7 | $\mathrm{~K}_{3} \mathrm{PO}_{4}$ | - | $41 \%$ |
| 8 | $\mathrm{~K}_{3} \mathrm{PO}_{4}$ | $\mathrm{PPh}_{3}$ | $76 \%$ |

[^1]
## 3. Characterization data for the products



Ethyl 4-methyl-2,6-diphenylpyrimidine-5-carboxylate (3a): White solid; m.p. 66-67 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.62-8.59(\mathrm{dd}, J=2.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 6 \mathrm{H})$, 4.28-4.22 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.10(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=168.5,165.4,163.7,163.7,138.2,137.1,131.1,130.0,128.7,128.6,128.5,128.5,123.4$, 61.8, 22.9, 13.7 ppm.


Ethyl 4-methyl-6-phenyl-2-p-tolylpyrimidine-5-carboxylate (3b): White solid; m.p. 61-63 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.49-8.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.33-7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.26-4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.10(\mathrm{t}, J=$ 7.2 Hz, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=168.5,165.3,163.7,163.6,141.5,138.3,134.4$, $130.0,129.3,128.7,128.5,128.5,123.1,61.8,22.7,21.6,13.7 \mathrm{ppm}$.


Ethyl 4-methyl-6-phenyl-2-m-tolylpyrimidine-5-carboxylate (3c): White solid, m.p. $69-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.27-8.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.67(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.42-7.39 (m, 3H), 7.33-7.29(t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.02-0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $168.4,165.3,163.8,163.3,138.2,138.1,137.0,131.8,129.9,129.1,128.5,128.4,125.8,123.3,61.7$, 22.9, 21.5, 13.6 ppm .


Ethyl 4-methyl-6-phenyl-2-o-tolylpyrimidine-5-carboxylate (3d): White solid; m.p. $77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.87-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.19(\mathrm{~m}$, $3 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.36,166.75,165.00,163.12,137.93,137.62,137.45,131.31,130.55,129.97$, $129.65,128.48,128.39,125.93,122.77,61.86,22.78,21.32,13.66 \mathrm{ppm}$.


Ethyl 2-(4-methoxyphenyl)-4-methyl-6-phenylpyrimidine-5-carboxylate (3e): White solid; m.p. 57$59{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.49-8.39(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 3 \mathrm{H})$, 6.95-6.85 (m, 2H), $4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=168.54,165.23,163.53,163.40,162.13,141.51,138.41,134.4$, $130.34,129.82,128.39,122.57,113.79,61.63,55.33,22.84,13.63 \mathrm{ppm}$.


Ethyl 2-(4-chlorophenyl)-4-methyl-6-phenylpyrimidine-5-carboxylate (3f): White solid; m.p. 84-86 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.51-8.36(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.13(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.25$, $165.48,163.63,162.64,138.04,137.29,135.59,130.00,129.96,128.70,128.44,128.41,123.52,61.80$, 22.80, 13.64 ppm .


Ethyl 4-methyl-2-(naphthalen-1-yl)-6-phenylpyrimidine-5-carboxylate (3g): White solid; m.p. 83$85{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62-8.60(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.31(\mathrm{~m}, 6 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}$, $3 \mathrm{H}), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.26,166.35,165.29,163.53$, $137.85,135.41,134.05,130.96,130.73,130.06,129.58,128.55,128.42,126.85,125.85,125.70$, $125.16,123.18,109.69,61.93,22.86,13.67 \mathrm{ppm}$.


Ethyl 4-methyl-2-phenyl-6-p-tolylpyrimidine-5-carboxylate (3h): White solid; m.p. $66-67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.60-8.38(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23-$ $7.17(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.63,165.14,163.59,163.34,140.23,137.23,135.30,130.91,129.17$, $128.58,128.44,128.41,123.14,61.72,22.81,21.38,13.73 \mathrm{ppm}$.


Ethyl 4-(4-methoxyphenyl)-6-methyl-2-phenylpyrimidine-5-carboxylate (3i): Colorless oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.54-8.43(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.72,164.98,163.36,162.53,161.17,137.14,130.82,130.32,130.01$, $128.44,128.36,122.68,113.80,61.66,55.24,22.71,13.73 \mathrm{ppm}$.


Ethyl 4-(4-fluorophenyl)-6-methyl-2-phenylpyrimidine-5-carboxylate (3j): White solid; m.p. 85$86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.46(\mathrm{dd}, J=6.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.33,165.46,165.20,163.65,162.71,162.28,136.97,134.28,131.10$, $130.58,130.50,128.58,128.50,123.16,115.66,115.44,61.84,22.82,13.74 \mathrm{ppm}$.


Ethyl 4-(4-chlorophenyl)-6-methyl-2-phenylpyrimidine-5-carboxylate (3k): White solid; m.p. 83$84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.52-8.41(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 5 \mathrm{H}), 4.16$
$(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $168.15,165.55,163.66,162.31,136.81,136.56,136.36,131.20,129.85,128.73,128.63,128.52$, 123.19, 61.92, 22.79, 13.74 ppm .


Ethyl 4-(4-bromophenyl)-6-methyl-2-phenylpyrimidine-5-carboxylate (31): White solid; m.p. 87-89 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.50(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.19(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.52$, $165.39,163.06,137.14,137.00,131.02,128.94,128.87,128.60,128.49,127.78,127.18,127.16$, $123.22,61.82,22.88,13.72 \mathrm{ppm}$.


Ethyl 4-methyl-6-phenyl-2-(phenylethynyl)pyrimidine-5-carboxylate (5a): White solid; m.p. 161$162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H})$, 4.22-4.17 (q, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=167.53,165.59,164.08,152.38,137.19,132.85,132.54,130.40,130.01,129.91,129.52,128.75$, $126.53,128.38,128.17,124.19,121.25,88.53,88.09,61.98,22.47,13.48 \mathrm{ppm}$.


Ethyl 4-Methyl-6-phenyl-2-(p-tolylethynyl)pyrimidine-5-carboxylate (5b): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.57,165.54,164.05,152.47,140.17,137.20,132.65,130.16,129.13,128.54$, $128.29,124.00,118.09,89.07,87.66,61.96,22.61,21.63,13.58 \mathrm{ppm}$.


Ethyl 4-Methyl-2-(oct-1-ynyl)-6-phenylpyrimidine-5-carboxylate (5c): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta=7.63-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.40$ (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H), $0.81(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta=167.58,165.39,163.91,152.27$, $137.18,130.06,128.44,128.25,123.95,91.65,79.93,61.87,31.25,28.70,27.89,22.52,22.43,19.41$, $13.99,13.53 \mathrm{ppm}$.


Ethyl 2-(3,3-Dimethylbut-1-ynyl)-4-methyl-6-phenylpyrimidine-5-carboxylate (5d): White solid; m.p. $98-9{ }^{\circ}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.25(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $167.61,165.29,163.90,152.51,137.33,129.99,128.43,128.29,123.94,98.45,78.87,61.82,30.38$,


Ethyl 4-Methyl-2-(oct-1-ynyl)-6-p-tolylpyrimidine-5-carboxylate (5e): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=7.2,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.52(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{dd}, J=$ 13.1, $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 4 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 3 \mathrm{H}), 0.82-0.79(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=167.83,165.15,163.72,152.25,140.42,134.27,129.17,128.28,123.80,91.41,80.03$, $61.86,31.27,28.71,27.92,22.50,22.45,21.35,19.43,14.00,13.64 \mathrm{ppm}$.


Ethyl 4-(4-Fluorophenyl)-6-methyl-2-(oct-1-ynyl)pyrimidine-5-carboxylate (5f): Yellow oil (331 $\mathrm{mg}, 90 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.64-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=11.9,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-$ $3.55(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.80(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.16,168.23,165.03,162.54$, $162.20,152.74,133.33,130.29,130.21,122.79,115.67,115.66,115.44,90.99,80.23,52.56,33.35$, 31.14, 28.60, 27.83, 22.33, 21.45, 19.37,13.86 ppm.


Ethyl 4-(4-Chlorophenyl)-6-methyl-2-(oct-1-ynyl)pyrimidine-5-carboxylate (5g): Yellow oil (350 $\mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.58-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.17(\mathrm{~m}, 2 \mathrm{H})$, $2.54(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.19(\mathrm{~m}$, 4H), $1.07-1.03(\mathrm{~m}, 3 \mathrm{H}), 0.85-0.76(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=167.43$, $165.64,162.59,152.33,136.52,135.59,129.73,128.75,123.84,92.04,79.86,62.07,31.27,29.65,28.72$, $27.90,22.56,22.45,19.44,14.01,13.67 \mathrm{ppm}$.


Ethyl 4-methyl-6-phenyl-2-(phenylamino)pyrimidine-5-carboxylate (7a): Colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.71(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=168.41,167.17,165.73,158.71,139.01,138.52,129.60,128.71,128.23$, 127.96, 122.57, 119.16, 116.93, 61.19, 22.88, 13.46 ppm.


Ethyl 4-methyl-6-phenyl-2-(p-tolylamino)pyrimidines-5-carboxylate (7b): Brown oil, ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=4.3$,
$2.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 0.99-$ $0.95(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.48,167.17,165.76,158.79,138.62,136.38,132.19$, $129.55,129.22,128.21,127.96,119.42,116.64,61.15,22.91,20.70,13.47 \mathrm{ppm}$.


Ethyl 4-methyl-6-phenyl-2-(o-tolylamino)pyrimidine-5-carboxylate (7c): Brown oil, ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=5.1,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.10$ (m, 2H), $6.97(\mathrm{dd}, J=8.5,11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.51,167.26,165.88,159.09,138.59,136.98,130.40$, $129.63,128.30,127.99,126.50,121.51,117.02,61.23,22.92,18.16,13.53 \mathrm{ppm}$.


Ethyl 2-(4-chlorophenylamino)-4-methyl-6-phenylpyrimidine-5-carboxylate (7d): Colourless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.97(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $3 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{dd}, J=7.7,6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=168.28,167.24,165.70,158.53,138.30,137.63,129.75,128.60,128.29$, $127.95,127.32,120.40,117.25,61.30,22.88,13.52 \mathrm{ppm}$.


Ethyl 4-(4-methoxyphenyl)-6-methyl-2-(phenylamino)pyrimidine-5-carboxylate (7e): Claybank oil, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.90,166.83,164.88,161.05,158.78,139.26$, $130.80,129.77,128.75,122.55,119.27,116.67,113.75,61.30,55.28,22.83,13.75 \mathrm{ppm}$.


Ethyl 4-(4-chlorophenyl)-6-methyl-2-(phenylamino)pyrimidine-5-carboxylate (7f): White solid, m.p. 129-130 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.54(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.09-7.04 (m, 2H), 6.87-6.75 (m, 1H), 3.98-3.86(m, 2H), 2.42-2.26(m, 3H), 0.92-0.74(m, 3 H$).{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.38,167.60,164.61,158.92,139.08,137.15,136.02,129.62,128.93$, $128.65,122.98,119.50,116.97,61.52,23.12,13.78 \mathrm{ppm}$.

## 4. NMR Spectra for products

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


[^2]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$







${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

##  <br> Non





通會


[^3]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$



[^4]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$



ザずが





[^5]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$



N゙
$\div \div$



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$





$\stackrel{\leftrightarrow}{i}$



| 130 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $11(\mathrm{ppm})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 | 210 | 190 | 170 | 150 | 130 | $\begin{gathered} 110 \\ \text { f1 (ppm) } \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |

## ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


[^6]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $3 \mathrm{k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$



[^7]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $31\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $5 \mathrm{a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $5 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$




|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 | 210 | 190 | 170 | 150 | 130 | $\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $5 \mathrm{c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


| 230 | 210 | 190 | 170 | 150 | 130 | $\begin{gathered} 110 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $5 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $5 \mathrm{e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
过过等


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $5 \mathrm{f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


$\rightarrow$
答



荡



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $5 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $7 \mathrm{a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


## ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $7 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$





$-61.15$



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $7 \mathrm{c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


## ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $7 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of compound $7 \mathrm{e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$











[^0]:    ${ }^{1}$ X. C. Wang, G. J. Yang, Z. J. Quan, P. Y. Ji, J. L. Liang and R. G. Ren, Synlett, 2010, 1657-1660.

[^1]:    ${ }^{\text {a }}$ Reaction condition: 1a ( 0.25 mmol ), 6a ( 0.38 mmol ), PGS-APTES-Pd(OAc) $)_{2}(\mathrm{Pd} 0.463 \mathrm{wt} \%$, $0.0435 \mathrm{mmol} / \mathrm{g}$ ), ligands ( $20 \mathrm{~mol} \% \mathrm{PPh}_{3}, 6 \mathrm{~mol} \%$ DPE-Phos or X-phos), base ( 2.0 equiv.), 1,4dioxane ( 5 mL ), $110^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield of 7 a by column chromatography.

[^2]:    | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^3]:    $\begin{array}{lllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^4]:    

[^5]:    

[^6]:    

[^7]:    $210 \quad 200$
    $180 \quad 180$
    $\begin{array}{lll}170 & 160 \quad 150\end{array}$
    $150 \quad 140$
    ${ }^{110} 1(\mathrm{ppm})$

