Electronic Supplementary Information (ESI)

Rod-like anhydrous V₂O₅ assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries

Weijun Zhou,^a Jizhang Chen,^{*a} Minfeng Chen,^a Xinwu Xu,^a Qinghua Tian,^b Junling Xu^{*c} and Ching-Ping Wong^{c,d}

^a College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

^b Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China ^c Department of Electronic Engineering, The Chinese University of Hong Kong, NT, Hong Kong, China ^d School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, United States

E-mail addresses: jizhang.chen@hotmail.com (J. Chen) and junlingxu@outlook.com (J. Xu)

Fig. S1 TGA curve of RA-V₂O₅, measured in air at a heating rate of 10 °C min⁻¹.

Fig. S2 XRD pattern of C-V₂O₅, in comparison with that of RA-V₂O₅.

Fig. S3 (a, b) SEM images C-V₂O₅.

Fig. S4 XPS spectra of RA- V_2O_5 and C- V_2O_5 .

Fig. S5 CV curves of C-V₂O₅ in initial three cycles at 0.2 mV s⁻¹.

Fig. S6 GCD curves of $C-V_2O_5$ in initial three cycles at 0.1 A g^{-1} .

Fig. S7 Log (*i*) versus log (*v*) plots of different redox peaks of (a) RA- V_2O_5 and (b) C- V_2O_5 under CV measurements.

Fig. S8 XRD pattern of neat CNT power.

Fig. S9 The magnified ex situ XRD patterns of RA-V₂O₅ at nine different charge/discharge states at 21th and 22th cycles.

Fig. S10 SEM images of the RA-V₂O₅ electrode surface after 2000 cycles at 2 A g^{-1} .

Cathode material	Capacity	Reference
	449.8 mA h $g^{\rm -1}$ at 0.1 A $g^{\rm -1}$	
$RA-V_2O_5$	314.3 mA h $g^{\scriptscriptstyle -1}$ at 2 A $g^{\scriptscriptstyle -1}$	This report
	186.8 mA h g ⁻¹ at 5 A g ⁻¹	
$Mg_{0.34}V_2O_5{\cdot}0.84H_2O$	353 mA h g ^{-1} at 0.1 A g ^{-1}	1
	81 mA h g ⁻¹ at 5 A g ⁻¹	1
$Ag_{0.4}V_2O_5$	340 mA h g ^{-1} at 0.1 A g ^{-1}	2
	185 mA h g^{-1} at 2 A g^{-1}	Z
Porous V ₂ O ₅ nanofibers	319 mA h g^{1} at 0.02A g^{1}	3
	104 mA h g^{-1} at 3 A g^{-1}	
V ₂ O ₅ nanosheets	224 mA h $g^{\scriptscriptstyle -1}$ at 0.1 A $g^{\scriptscriptstyle -1}$	4
	100 mA h g^{-1} at 2 A g^{-1}	
V ₂ O ₅ nanospheres	188.7 mA h g $^{-1}$ at 0.5 A g $^{-1}$	5
	138.3 mA h g^{-1} at 5 A g^{-1}	
V ₂ O ₅ hollow spheres	280 mA h g $^{-1}$ at 0.2 A g $^{-1}$	6
	147 mA h g^{-1} at 5 A g^{-1}	
VO ₂	283 mA h g^{-1} at 0.1 A g^{-1}	7
	72 mA h g^{-1} at 5 A g^{-1}	
VO ₂	274 mA h g^{-1} at 0.1 A g^{-1}	8
	170 mA h g^{-1} at 5 A g^{-1}	
$V_{10}O_{24} \cdot 12H_2O$	164.5 mA h g^{-1} at 0.2 A g^{-1}	9
	90.4 mA h g ⁻¹ at 5 A g ⁻¹	
VS_2	190.3 mA h g ⁻¹ at 0.05 A g ⁻¹	10
	115.5 mA h g^{-1} at 2 A g^{-1}	
LiV ₃ O ₈	230 mA h g ⁻¹ at 0.033 A g ⁻¹	11
	29 mA h g^{-1} at 1.666 A g^{-1}	
NaV ₃ O ₈ ·1.5H ₂ O	375 mA h g^{-1} at 0.1 A g^{-1}	12
	165 mA h g^{-1} at 4 A g^{-1}	
NaV ₆ O ₁₅ nanorods	427 mA h g^{-1} at 0.05 A g^{-1}	13
	195 mA h g^{-1} at 1.6 A g^{-1}	
$Zn_2V_2O_7$	203.4 mA h g^{-1} at 0.3 A g^{-1}	14
	155 mA h g^{-1} at 4 A g^{-1}	
Zn ₂ (OH)VO ₄	204 mA h g^{-1} at 0.1 A g^{-1}	15
	$160 \text{ mA h g}^{-1} \text{ at } 2 \text{ A g}^{-1}$	
$Zn_3V_2O_7(OH)_2 \cdot 2H_2O$	213 mA h g^{-1} at 0.05 A g^{-1}	16
	76 mA h g^{-1} at 3 A g^{-1}	
Fe ₅ V ₁₅ O ₃₉ (OH) ₉ ·9H ₂ O	385 mA h g^{-1} at 0.1 A g^{-1}	17
	105 mA h g ⁻¹ at 5 A g ⁻¹	
VOPO ₄	139 mA h g ⁻¹ at 0.05 A g ⁻¹	18
	50 mA h g ⁻¹ at 5 A g ⁻¹	

Table S1 The capacities of $RA-V_2O_5$ in comparison with that of state-of-the-art vanadium-based cathode materials for AZIBs.

References

- F. W. Ming, H. F. Liang, Y. J. Lei, S. Kandambeth, M. Eddaoudi and H. N. Alshareef, ACS Energy Lett., 2018, 3, 2602-2609.
- L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou and S. Liang, *Energy Storage Mater.*, 2018, 18, 10-14.
- 3. X. Chen, L. Wang, H. Li, F. Cheng and J. Chen, J. Energy Chem., 2019, 38, 20-25.
- 4. J. Zhou, L. T. Shan, Z. X. Wu, X. Guo, G. Z. Fang and S. Q. Liang, *Chem. Commun.*, 2018, 54, 4457-4460.
- F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou and S. Liang, *Nano-Micro Lett.*, 2019, 11, 25.
- 6. H. Qin, L. Chen, L. Wang, X. Chen and Z. Yang, *Electrochim. Acta*, 2019, 306, 307-316.
- L. N. Chen, Y. S. Ruan, G. B. Zhang, Q. L. Wei, Y. L. Jiang, T. F. Xiong, P. He, W. Yang, M. Y. Yan, Q. Y. An and L. Q. Mai, *Chem. Mater.*, 2019, **31**, 699-706.
- 8. T. Y. Wei, Q. Li, G. Z. Yang and C. X. Wang, J. Mater. Chem. A, 2018, 6, 8006-8012.
- 9. T. Y. Wei, Q. Li, G. Z. Yang and C. X. Wang, Electrochim. Acta, 2018, 287, 60-67.
- P. He, M. Y. Yan, G. B. Zhang, R. M. Sun, L. N. Chen, Q. Y. An and L. Q. Mai, *Adv. Energy Mater.*, 2017, 7, 1601920.
- M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu, K. S. Lee, Y. K. Sun and J. Kim, *Chem. Mater.*, 2017, 29, 1684-1694.
- 12. F. Wan, L. L. Zhang, X. Dai, X. Y. Wang, Z. Q. Niu and J. Chen, Nat. Commun., 2018, 9, 1656.
- 13. S. Islam, M. H. Alfaruqi, B. Sambandam, D. Y. Putro, S. Kim, J. Jo, S. Kim, V. Mathew and J. Kim, *Chem. Commun.*, 2019, **55**, 3793-3796.
- 14. B. Sambandam, V. Soundharrajan, S. Kim, M. H. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y. K. Sun and J. Kim, *J. Mater. Chem. A*, 2018, **6**, 3850-3856.
- D. L. Chao, C. Zhu, M. Song, P. Liang, X. Zhang, N. H. Tiep, H. F. Zhao, J. Wang, R. M. Wang, H. Zhang and H. J. Fan, *Adv. Mater.*, 2018, **30**, 1803181.
- 16. C. Xia, J. Guo, Y. J. Lei, H. F. Liang, C. Zhao and H. N. Alshareef, Adv. Mater., 2018, 30, 1705580.
- 17. Z. Peng, Q. L. Wei, S. S. Tan, P. He, W. Luo, Q. Y. An and L. Q. Mai, *Chem. Commun.*, 2018, **54**, 4041-4044.
- 18. F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu and J. Chen, *Angew. Chem. Int. Edit.*, 2019, **58**, 7062-7067.