Concise synthesis of *N*-thiomethyl benzoimidazoles through a

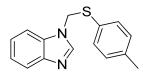
base-promoted sequential four-component assembly

Jingxin Tian,[†] Shanshan Yuan,[†] Fuhong Xiao,* Huawen, Huang, Guo-Jun Deng*

^a Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China. Fax: (+86)0731-58292251; Tel: (+86)0731-58298280; E-mail: <u>fhxiao@xtu.edu.cn</u>; <u>gjdeng@xtu.edu.cn</u>

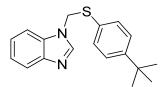
Table of Contents

1. General information	2	
2. General experimental procedure	2	
3. Characterization data of products	2-22	
4. ¹ H and ¹³ C NMR spectra of products	23-69	


General information:

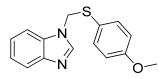
Thiolation reaction is conducted under an atmosphere of air. Flash column chromatography was performed over silica gel 48-75 µm. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or acetone signals. MS analyses were performed on an Agilent 5975 GC-MS instrument (EI). HRMS was conducted using electrospraying ionization (ESI) and was performed on a Thermo Scientific LTQ Orbitrap XL. The structures of known compounds were further corroborated by comparing their NMR data and MS data with those of literature. Reagents were used as received or prepared by our laboratory.

General procedure: (3aa):


A 10 mL oven-dried reaction vessel was charged with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol), paraformaldehyde (24 mg, 0.8 mmol). 4-aminodiphenylamine (36.8 mg, 0.2 mmol), H₂O (0.2 mL) and 1,1,2,2-tetrachloroethane (0.7 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred at 130 °C for 3 h. The volatiles were removed under vacuum and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3aa** as white solid; yield: 36.0 mg (71%), mp 72 - 74 °C.

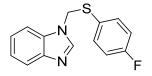
1-((*p*-Tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3aa)

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.76 (m, 1H), 7.45 (s, 1H), 7.43 - 7.38 (m, 2H), 7.10 - 7.03 (m, 4H), 5.34 (s, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 142.6, 139.5, 134.3, 132.7, 130.2, 128.1, 123.1, 122.5, 120.3, 110.3, 50.7, 21.1. HRMS (ESI) calcd for C₁₅H₁₅N₂S⁺ (M+H)⁺ 255.0951, found 255.0953.


1-(((4-(*tert*-Butyl)phenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ab)

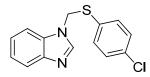
The reaction was conducted with 4-(*tert*-butyl)benzenethiol (**2b**, 86 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ab** as black solid; yield: 40.9 mg (69%), mp 62 - 64 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.78 (m, 1H), 7.52 (s, 1H), 7.32 (d, *J* = 2.3 Hz, 1H), 7.29 - 7.24 (m, 4H), 7.14 - 7.11 (m, 2H), 5.33 (s, 2H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 143.6, 142.6, 134.0, 132.8, 128.3, 126.4, 123.0, 122.5, 120.3, 110.3, 50.6, 34.6, 31.1. HRMS (ESI) calcd for C₁₈H₂₁N₂S⁺ (M+H)⁺ 297.1420, found 297.1421.


1-(((4-Methoxyphenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ac)

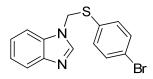
The reaction was conducted with 4-methoxybenzenethiol (**2c**, 61.5 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 1:1) to give **3ac** as brown solid; yield: 29.1 mg (54%), mp 145 - 147 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.81 - 7.76 (m, 1H), 7.43 (s, 1H), 7.41 - 7.37 (m, 1H), 7.33 - 7.27 (m, 2H), 7.10 - 7.05 (m, 2H), 6.78 - 6.73 (m, 2H), 5.28 (s, 2H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 143.9, 142.6, 136.5, 132.7, 123.1, 122.5, 122.0, 120.3, 114.9, 110.4, 55.3, 51.1. HRMS (ESI) calcd for C₁₅H₁₅N₂OS⁺ (M+H)⁺ 271.0899, found 271.0898.


1-(((4-Fluorophenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ad)

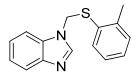
The reaction was conducted with 4-fluorobenzenethiol (**2d**, 53 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ad** as brown solid; yield: 32.5 mg (63%), mp 71 - 73 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.76 (m, 1H), 7.48 (s, 1H), 7.37 - 7.36 (m, 1H), 7.33 - 7.28 (m, 2H), 7.18 - 7.10 (m, 2H), 6.97 - 6.88 (m, 2H), 5.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5 (d, J = 249 Hz), 143.9, 142.5, 136.8 (d, J = 8.5 Hz), 132.6, 126.7 (d, J = 3.4 Hz), 123.3, 122.7, 120.8, 116.6 (d, J = 21.8 Hz), 110.3, 50.8 (d, J = 1.5 Hz). HRMS (ESI) calcd for C₁₄H₁₂FN₂S⁺ (M+H)⁺ 259.0700, found 259.0701.


1-(((4-Chlorophenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ae)

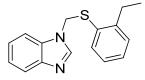
The reaction was conducted with 4-chlorobenzenethiol (**2e**, 70 mg, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ae** as white solid; yield: 32 mg (58%), mp 95 - 97 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.78 (m, 1H), 7.51 (s, 1H), 7.40 - 7.37 (m, 1H), 7.34 - 7.29 (m, 2H), 7.23 - 7.18 (m, 2H), 7.16 - 7.08 (m, 2H), 5.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 142.5, 135.7, 135.6, 132.6, 130.1, 129.6, 123.3, 122.7, 120.5, 110.3, 50.4. HRMS (ESI) calcd for C₁₄H₁₂ClN₂S⁺ (M+H)⁺ 275.0404, found 275.0406.


1-(((4-Bromophenyl)thio)methyl)-1H-benzo[d]imidazole (3af)

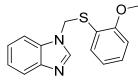
The reaction was conducted with 4-bromobenzenethiol (**2f**, 97 mg, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3af** as white solid; yield: 40.7 mg (64%), mp 108 - 110 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.76 (m, 1H), 7.52 (s, 1H), 7.42 - 7.34 (m, 3H), 7.34 - 7.28 (m, 2H), 7.07 - 7.00 (m, 2H), 5.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 142.5, 135.7, 132.6, 132.6, 130.7, 123.9, 123.3, 122.7, 120.5, 110.3, 50.3. HRMS (ESI) calcd for C₁₄H₁₂BrN₂S⁺ (M+H)⁺ 318.9899, found 318.9901.


1-((o-Tolylthio)methyl)-1H-benzo[d]imidazole (3ag)

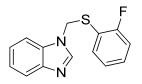
The reaction was conducted with 2-methylbenzenethiol (**2g**, 61.5 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ag** as brown solid; yield: 28.4 mg (56%), mp 69 - 72 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.73 (m, 1H), 7.41 (s, 1H), 7.36 - 7.34 (m, 1H), 7.31 - 7.27 (m, 2H), 7.24 - 7.13 (m, 3H), 7.10 - 7.06 (m, 1H), 5.34 (s, 2H), 2.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.4, 141.9, 135.2, 132.9, 131.1, 130.7, 129.4, 127.0, 123.1, 122.5, 120.4, 110.1, 50.0, 20.4. HRMS (ESI) calcd for C₁₅H₁₅N₂S⁺ (M+H)⁺ 255.0951, found 255.0953.


1-(((2–Ethylphenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ah)

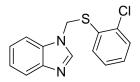
The reaction was conducted with 2-ethylbenzenethiol (**2h**, 66 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ah** as green solid; yield: 30 mg (56%), mp 33 - 35 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.74 (m, 1H), 7.42 (s, 1H), 7.35 - 7.32 (m, 1H), 7.31 - 7.24 (m, 3H), 7.20 - 7.15 (m, 2H), 7.10 - 7.06 (m, 1H), 5.35 (s, 2H), 2.51 (q, *J* = 7.5 Hz, 2H), 0.99 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 143.8, 142.5, 135.1, 132.8, 130.6, 129.6, 129.3, 126.9, 123.1, 122.5, 120.4, 110.1, 50.4, 26.9, 15.3. HRMS (ESI) calcd for C₁₆H₁₇N₂S⁺ (M+H)⁺ 269.1107, found 269.1106.


1-(((2-Methoxyphenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ai)

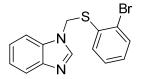
The reaction was conducted with 2-methoxybenzenethiol (**2i**, 61 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ai** as white solid; yield: 25.5 mg (47%), mp 100 - 103 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.78 - 7.71 (m, 1H), 7.54 (s, 1H), 7.43 - 7.38 (m, 1H), 7.33 - 7.25 (m, 3H), 7.14 - 7.12 (m, 1H), 6.87 - 6.85 (m, 1H), 6.80 - 6.75 (m, 1H), 5.44 (s, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 143.7, 142.6, 136.5, 133.1, 131.2, 123.1, 122.4, 121.2, 120.2, 118.7, 111.1, 110.2, 55.7, 48.1. HRMS (ESI) calcd for C₁₅H₁₅N₂OS⁺ (M+H)⁺ 271.0899, found 271.0898.


1-(((2-Fluorophenyl)thio)methyl)-1H-benzo[d]imidazole (3aj)

The reaction was conducted with 2-fluorobenzenethiol (2j, 53 μ L, 0.5 mmol) and 1,2-diaminobenzene (1a, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give 3aj as black solid; yield: 33.5 mg (65%), mp 99 - 101 °C.

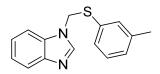
¹H NMR (400 MHz, CDCl₃) δ 7.77 - 7.75 (m, 1H), 7.55 (s, 1H), 7.42 - 7.40 (m, 1H), 7.35 - 7.26 (m, 3H), 7.11 (t, *J* = 8.8 Hz, 1H), 7.04 - 7.00 (m, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 5.43 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, *J* = 246 Hz), 143.8, 142.5, 136.6, 132.8, 131.7 (d, *J* = 8.1 Hz), 124.9 (d, *J* = 3.9 Hz), 123.2, 122.6, 120.4, 118.1 (d, *J* = 17.8 Hz), 116.2 (d, *J* = 22.6 Hz), 110.1, 48.4, 48.4. HRMS (ESI) calcd for C₁₄H₁₂FN₂S⁺ (M+H)⁺ 259.0700, found 259.0701.


1-(((2-Chlorophenyl)thio)methyl)-1H-benzo[d]imidazole (3ak)

The reaction was conducted with 2-chlorobenzenethiol (**2k**, 56.7 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ak** as brown liquid; yield: 31.3 mg (57%).

¹H NMR (400 MHz, CDCl₃) δ 7.78 - 7.73 (m, 1H), 7.54 (s, 1H), 7.46 - 7.44 (m, 1H), 7.42 - 7.37 (m, 1H), 7.32 - 7.21 (m, 3H), 7.06 - 7.01 (m, 2H), 5.47 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 142.4, 138.3, 136.5, 132.9, 130.8, 130.3, 129.9, 127.5, 123.2, 122.6, 120.4, 110.1, 48.1. HRMS (ESI) calcd for C₁₄H₁₂ClN₂S⁺ (M+H)⁺ 275.0404, found 275.0405.

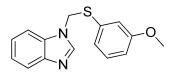
1-(((2-Bromophenyl)thio)methyl)-1H-benzo[d]imidazole (3al)



The reaction was conducted with 2-bromobenzenethiol (21, 60 μ L, 0.5 mmol) and 1,2-diaminobenzene (1a, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give 3al as white solid; yield:

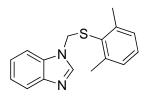
40.7 mg (64%), mp 90 - 92 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.72 (m, 1H), 7.67 - 7.59 (m, 1H), 7.54 (s, 1H), 7.44 - 7.35 (m, 1H), 7.31 - 7.25 (m, 2H), 7.16 - 7.13 (m, 1H), 7.08 - 6.98 (m, 2H), 5.47 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.5, 136.4, 133.6, 132.9, 132.0, 130.8, 129.2, 128.2, 123.2, 122.6, 120.4, 110.1, 48.5. HRMS calcd for C₁₄H₁₂BrN₂S⁺ (M+H)⁺ 318.9899, found 318.9901.


1-((*m*-Tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3am)

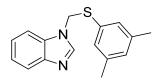
The reaction was conducted with 3-methylbenzenethiol (**2m**, 61 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3am** as black liquid; yield: 30.9 mg (61%).

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.76 (m, 1H), 7.51 (s, 1H), 7.38 - 7.36 (m, 1H), 7.32 - 7.27 (m, 2H), 7.16 - 7.12 (m, 2H), 7.03 - 6.98 (m, 2H), 5.37 (s, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 142.6, 139.3, 134.6, 132.8, 131.5, 130.9, 129.8, 129.2, 123.1, 122.5, 120.4, 110.3, 50.3, 21.0. HRMS calcd for C₁₅H₁₅N₂S⁺ (M+H)⁺ 255.0951, found 255.0953.


1-(((3-Methoxyphenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3an)

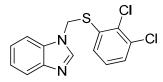
The reaction was conducted with 3-methoxybenzenethiol (**2n**, 62 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3an** as brown liquid; yield: 33.6 mg (62%).

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.75 (m, 1H), 7.56 (s, 1H), 7.41 - 7.36 (m, 1H), 7.33 - 7.27 (m, 2H), 7.20 - 7.14 (m, 1H), 6.87 - 6.79 (m, 2H), 6.63 - 6.64 (m, 1H), 5.39 (s, 2H), 3.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 143.8, 142.6, 132.8, 130.2, 126.0, 123.2, 122.6, 120.4, 118.8, 115.4, 110.3, 55.2, 50.2. HRMS calcd for C₁₅H₁₅N₂OS⁺ (M+H)⁺ 271.0900, found271.0898.


1-(((2,6–Dimethylphenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ao)

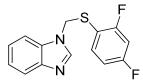
The reaction was conducted with 2,6-dimethylbenzenethiol (**2o**, 68 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ao** as white solid; yield: 21 mg (39%), mp 116 - 118 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.79 - 7.73 (m, 1H), 7.29 - 7.26 (m, 4H), 7.17 - 7.13 (m, 1H), 7.04 (d, *J* = 7.5 Hz, 2H), 5.24 (s, 2H), 2.13 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 143.6, 142.4, 133.0, 130.3, 129.6, 128.5, 123.2, 122.5, 120.3, 109.8, 49.1, 21.4. HRMS calcd for C₁₆H₁₇N₂S⁺ (M+H)⁺ 269.1107, found 269.1106.


1-(((3,5-Dimethylphenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ap)

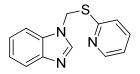
The reaction was conducted with 3,5-dimethylbenzenethiol (**2p**, 68 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ap** as green liquid; yield: 35.5 mg (66%).

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.75 (m, 1H), 7.53 (s, 1H), 7.38 - 7.33 (m, 1H), 7.31 - 7.26 (m, 2H), 6.92 (s, 1H), 6.80 (s, 2H), 5.35 (s, 2H), 2.19 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.6, 139.1, 132.8, 131.5, 131.2, 130.8, 123.0, 122.5, 120.3, 110.3, 50.3, 21.0. HRMS calcd for C₁₆H₁₇N₂S⁺ (M+H)⁺ 269.1107, found 269.1106.


1-(((2,3–Dichlorophenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3aq)

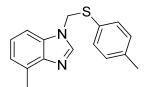
The reaction was conducted with 2,3-dichlorobenzenethiol (**2q**, 89.6 mg, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3aq** as white solid; yield: 37.8 mg (61%), mp 115 - 117 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.78 - 7.71 (m, 1H), 7.61 (s, 1H), 7.41 - 7.38 (m, 2H), 7.33 - 7.27 (m, 2H), 6.95 - 6.90 (m, 2H), 5.49 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.4, 136.1, 134.2, 133.9, 132.9, 132.5, 131.4, 127.6, 123.3, 122.7, 120.5, 110.0, 47.9. HRMS calcd for C₁₄H₁₁Cl₂N₂S⁺ (M+H)⁺ 309.0015, found 309.0011.


1-(((2,4-Difluorophenyl)thio)methyl)-1*H*-benzo[*d*]imidazole (3ar)

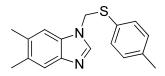
The reaction was conducted with 2,4-difluorobenzenethiol (**2r**, 57 μ L, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ar** as brown solid; yield: 9.3 mg (17%), mp 81 - 83 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.75 (m, 1H), 7.64 (s, 1H), 7.45 - 7.38 (m, 1H), 7.37 - 7.30 (m, 2H), 7.01 - 6.95 (m, 1H), 6.90 - 6.82 (m, 1H), 6.69 (t, *J* = 8.0 Hz, 1H), 5.41 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9 (dd, *J* = 102.9, 12.0 Hz), 162.4 (dd, *J* = 99.2, 12.1 Hz), 143.7, 142.4, 138.1 (d, *J* = 11.3 Hz), 123.4, 122.8, 120.5, 113.5 (d, *J* = 18.4 Hz), 112.4 (dd, *J* = 21.4, 3.9 Hz), 110.1, 104.9, 104.9 (d, *J* = 52.4 Hz), 48.7. HRMS calcd for C₁₄H₁₁F₂N₂S⁺ (M+H)⁺ 277.0606, found 277.0604.


1-((Pyridin-2-ylthio)methyl)-1*H*-benzo[*d*]imidazole (3as)

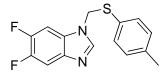
The reaction was conducted with pyridine-2-thiol (**2s**, 55.5 mg, 0.5 mmol) and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3as** as yellow solid; yield: 18.9 mg (39%), mp 97 - 99 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 4.8 Hz, 1H), 8.21 (s, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.54 - 7.44 (m, 2H), 7.35 - 7.25 (m, 2H), 7.09 - 7.04 (m, 2H), 5.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 149.4, 143.9, 143.6, 136.7, 133.0, 123.1, 123.0, 122.4, 120.7, 120.3, 110.0, 43.1. HRMS calcd for C₁₃H₁₂N₃S⁺ (M+H)⁺ 242.0746, found 242.0745.


4-Methyl-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3ba)

The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol) and 3-methylbenzene-1,2-diamine (**1b**, 24.4 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ba** as brown liquid; yield: 32.1 mg (63%).

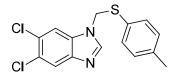
¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.26 - 7.20 (m, 2H), 7.12 - 7.04 (m, 5H), 5.31 (s, 2H), 2.66 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 141.7, 139.4, 134.3, 132.3, 130.2, 130.2, 128.2, 123.0, 122.9, 107.8, 50.8, 21.1, 16.5. HRMS calcd for C₁₆H₁₇N₂S⁺ (M+H)⁺ 269.1107, found 269.1106.


5,6-Dimethyl-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3ca)

The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol) and 4,5-dimethylbenzene-1,2-diamine (**1c**, 27.2 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ca** as brown solid; yield: 17.4 mg (31%), mp 115 - 117 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.32 (s, 1H), 7.13 (s, 1H), 7.10 - 7.03 (m, 4H), 5.29 (s, 2H), 2.38 (s, 6H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 141.9, 139.4, 134.5, 132.3, 131.5, 131.2, 130.2, 128.4, 120.4, 110.6, 50.9, 21.1, 20.5, 20.2. HRMS calcd for C₁₇H₁₉N₂S⁺ (M+H)⁺ 283.1264, found 283.1267.

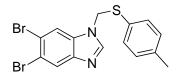
5,6-Difluoro-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (3da)



The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4,5-difluorobenzene-1,2-diamine (1d, 28.8 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3da** as white solid; yield:

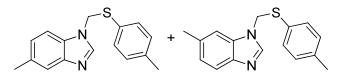
43.7 mg (75%), mp 133 - 135 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.56 - 7.52 (m, 1H), 7.46 (s, 1H), 7.15 - 7.11 (m, 1H), 7.08 - 7.04 (m, 4H), 5.28 (s, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.3 (dd, J = 30.6, 15.3 Hz), 146.9 (dd, J = 28.2, 15.3 Hz), 144.0 (d, J = 3.0 Hz), 139.9, 139.1 (d, J = 11.7 Hz), 134.5, 130.3, 128.1 (d, J = 11.0 Hz), 127.6, 107.7 (d, J = 19.8 Hz), 98.6 (d, J = 23.3 Hz), 51.1, 21.1. HRMS calcd for C₁₅H₁₃F₂N₂S⁺ (M+H)⁺ 291.0762, found 291.0761.


5,6-Dichloro-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (3ea)

The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol) and 4,5-dichlorobenzene-1,2-diamine (**1e**, 35.4 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ea** as black solid; yield: 41.7 mg (65%), mp 155 - 157 °C.

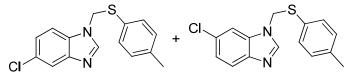
¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.46 (s, 1H), 7.34 (s, 1H), 7.08 - 7.05 (m, 4H), 5.26 (s, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 143.2, 140.0, 134.6, 132.0, 130.3, 127.6, 127.2, 126.7, 121.5, 111.9, 51.1, 21.1. HRMS calcd for C₁₅H₁₃Cl₂N₂S⁺ (M+H)⁺ 323.0171, found 323.0175.


5,6-Dibromo-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3fa)

The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol) and 4,5-dibromobenzene-1,2-diamine (**1f**, 53.2 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3fa** as white solid; yield: 48 mg (58%), mp 162 - 164 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.49 (s, 1H), 7.45 (s, 1H), 7.08 - 7.05 (m, 4H), 5.26 (s, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 144.1, 140.0, 134.6, 132.9, 130.3, 127.5, 124.7, 118.5, 117.9, 115.1, 51.2, 21.2. HRMS calcd for C₁₅H₁₃Br₂N₂S⁺ (M+H)⁺ 410.9161, found 410.9164.

6-Methyl-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (3ga')

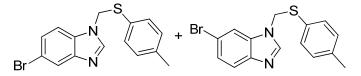

The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-methylbenzene-1,2-diamine (1g, 24.4 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give 3ga and 3ga'; yield: 30 mg (59%).

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 1H), 7.57 (s, 1H), 7.37 (d, J = 2.5 Hz, 2H), 7.29 (d, J = 8.2 Hz, 1H), 7.14 - 7.09 (m, 4H), 7.06 (d, J = 6.6 Hz, 7H), 5.29 (d, J = 2.6 Hz, 4H), 2.48 (s, 6H), 2.30 (s, 6H).

5-Chloro-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole

and

6-Chloro-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3ha')


The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol) and 4-chlorobenzene-1,2-diamine (**1h**, 28.5 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ha** and **3ha'**; yield: 41 mg (71%).

¹H NMR (400 MHz, CDCl₃) *δ* 7.75 (d, *J* = 1.5 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.28 - 7.22 (m, 4H), 7.07 - 7.03 (m, 8H), 5.29 (s, 2H), 5.27 (s, 2H), 2.31 (d, *J* = 2.3 Hz, 6H).

5-Bromo-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3ia)

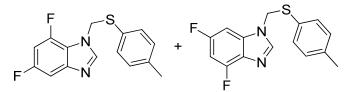
and

6-Bromo-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (3ia')

The reaction was conducted with 4-methylbenzenethiol (2a, 62 mg, 0.5 mmol) and 4-bromobenzene-1,2-diamine (1i, 37.4 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ia** and **3ia'**; yield: 41 mg

and

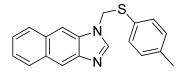
(3ga)


(3ha)

(62%).

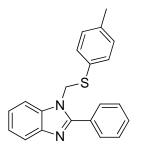
¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 1.6 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.44 (s, 1H), 7.41 - 7.38 (m, 4H), 7.26 (s, 1H), 7.07 - 7.04 (m, 8H), 5.29 (s, 2H), 5.27 (s, 2H), 2.31 (d, J = 4.3 Hz, 6H).

5,7-Difluoro-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (3ja) and


4,6-Difluoro-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (3ja')

The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol) and 3,5-difluorobenzene-1,2-diamine (**1j**, 28.8 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ja** and **3ja'**; yield: 37.7 mg (65%).

¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.34 (s, 1H), 7.28 - 7.25 (m, 1H), 7.07 (d, J = 1.9 Hz, 8H), 6.88 - 6.76 (m, 3H), 5.42 (s, 2H), 5.27 (s, 2H), 2.32 (d, J = 2.1 Hz, 6H).


1-((p-Tolylthio)methyl)-1H-naphtho[2,3-d]imidazole (3ka)

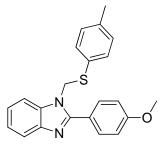
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol) and naphthalene-2,3-diamine (**1k**, 31.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1) to give **3ka** as black solid; yield: 17.0 mg (28%), mp 134 - 136 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.79 (s, 1H), 7.58 (s, 1H), 7.47 - 7.42 (m, 2H), 7.09 - 7.02 (m, 4H), 5.42 (s, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 143.9, 139.7, 134.7, 133.0, 130.5, 130.3, 130.3, 128.5, 128.2, 127.6, 124.7, 123.8, 117.6, 106.6, 51.1, 21.2. HRMS calcd for C₁₉H₁₇N₂S⁺ (M+H)⁺ 305.1107, found 305.1111.

2-Phenyl-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5aa)

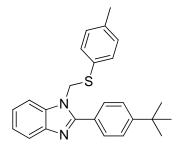
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), benzaldehyde (**4a**, 41 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5aa** as brown liquid; yield: 43.0 mg (65%).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.9 Hz, 1H), 7.41 - 7.26 (m, 8H), 7.00 - 6.92 (m, 4H), 5.42 (s, 2H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 142.9, 139.4, 134.7, 130.0, 129.7, 129.5, 129.4, 128.4, 127.9, 122.9, 122.9, 119.9, 111.3, 50.5, 21.1. HRMS (ESI) m/z calcd for C₂₁H₁₉N₂S⁺ (M+H)⁺ 331.1264, found 331.1267.


2-(p-Tolyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5ab)

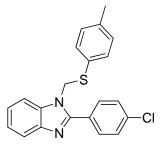
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 4-methylbenzaldehyde (**4b**, 47 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ab** as brown solid; yield: 48.5 mg (70%), mp 115 - 117 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1H), 7.33 - 7.25 (m, 5H), 7.19 (d, J = 7.9 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 7.9 Hz, 2H), 5.43 (s, 2H), 2.40 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 142.9, 139.8, 139.3, 134.8, 134.6, 130.0, 129.3, 129.1, 128.1, 126.6, 122.7, 122.7, 119.8, 111.1, 50.4, 21.4, 21.1. HRMS (ESI) m/zcalcd for C₂₂H₂₁N₂S⁺ (M+H)⁺ 345.1420, found 345.1418.


2-(4-Methoxyphenyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5ac)

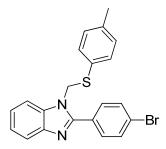
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 4-methoxybenzaldehyde (**4c**, 49 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ac** as green liquid; yield: 32.4 mg (45%).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 8.7 Hz, 2H), 7.30 - 7.24 (m, 3H), 7.07 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 7.9 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 5.43 (s, 2H), 3.86 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 153.8, 142.9, 139.2, 134.8, 134.6, 130.8, 130.0, 128.1, 122.7, 122.6, 121.9, 119.6, 113.8, 111.1, 55.3, 50.5, 21.1. HRMS (ESI) m/z calcd for C₂₂H₂₁N₂OS⁺ (M+H)⁺ 361.1369, found 361.1367.


2-(4-(tert-Butyl)phenyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5ad)

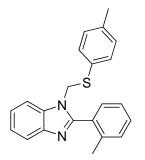
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 4-(*tert*-butyl)benzaldehyde (**4d**, 67 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ad** as white solid; yield: 36.8 mg (48%), mp 129 - 131 °C.

¹H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 7.8 Hz, 1H), 7.41 - 7.34 (m, 4H), 7.31 - 7.23 (m, 3H), 7.04 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 5.46 (s, 2H), 2.31 (s, 3H), 1.34 (d, J = 6.5 Hz, 9H). ¹³C NMR (100 MHz, CDCl3) δ 154.0, 152.9, 143.1, 139.2, 134.9, 134.7, 130.0, 129.1, 128.2, 126.6, 125.4, 122.8, 122.8, 119.9, 111.2, 50.6, 34.8, 31.3, 21.2. HRMS (ESI) m/z calcd for C₂₅H₂₇N₂S⁺ (M+H)⁺ 387.1890, found 387.1886.


2-(4-Chlorophenyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5ae)

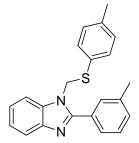
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 4-chlorobenzaldehyde (**4e**, 47 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ae** as brown solid; yield: 23.4 mg (32%), mp 121 - 123 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.78 (m, 1H), 7.36 - 7.28 (m, 7H), 7.03 - 6.97 (m, 4H), 5.42 (s, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 142.9, 139.6, 136.0, 134.8, 134.8, 130.7, 130.1, 128.7, 128.0, 127.8, 123.2, 123.1, 120.0, 111.3, 50.5, 21.2. HRMS (ESI) m/z calcd for C₂₁H₁₈ClN₂S⁺ (M+H)⁺ 365.0874, found 365.0872.


2-(4-Bromophenyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5af)

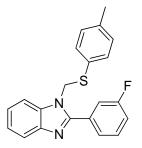
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 4-bromobenzaldehyde (**4f**, 74 mg, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5af** as brown solid; yield: 36.4 mg (45%), mp 127 - 130 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.78 (m, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.35 - 7.28 (m, 3H), 7.25 - 7.23 (m, 2H), 7.03 - 6.96 (m, 4H), 5.42 (s, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 142.9, 139.6, 134.8, 134.8, 131.7, 130.9, 130.1, 128.5, 127.7, 124.3, 123.2, 123.1, 120.0, 111.3, 50.5, 21.2. HRMS (ESI) m/z calcd for C₂₁H₁₈BrN₂S⁺ (M+H)⁺ 409.0369, found 409.0370.


2-(o-Tolyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5ag)

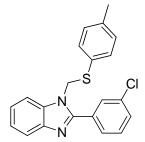
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 2-methylbenzaldehyde (**4g**, 46 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ag** as green liquid; yield: 37.0 mg (54%).

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.74 (m, 1H), 7.41 - 7.36 (m, 1H), 7.33 - 7.22 (m, 4H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 8.9 Hz, 4H), 6.77 (d, *J* = 7.2 Hz, 1H), 5.23 (s, 2H), 2.32 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 143.0, 139.1, 137.9, 134.4, 133.7, 130.2, 130.2, 130.0, 129.7, 128.9, 128.0, 125.4, 122.7, 122.6, 119.8, 111.3, 49.9, 21.1, 19.6. HRMS (ESI) m/z calcd for C₂₂H₂₁N₂S⁺ (M+H)⁺ 345.1420, found 345.1423.


2-(*m*-Tolyl)-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (5ah)

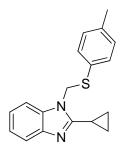
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 3-methylbenzaldehyde (**4h**, 47 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ah** as brown liquid; yield: 40.1 mg (58%).

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.7 Hz, 1H), 7.37 - 7.24 (m, 5H), 7.18 (d, J = 7.1 Hz, 1H), 7.14 (s, 1H), 7.02 - 6.96 (m, 4H), 5.44 (s, 2H), 2.34 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 143.0, 139.2, 138.3, 134.7, 134.7, 130.4, 130.1, 130.0, 129.4, 128.2, 127.9, 126.3, 122.8, 119.9, 111.3, 50.3, 21.2, 21.1. HRMS (ESI) m/z calcd for C₂₂H₂₁N₂S⁺ (M+H)⁺ 345.1420, found 345.1420.


2-(3-Fluorophenyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5ai)

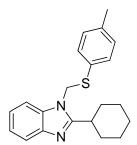
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 3-fluorobenzaldehyde (**4i**, 42 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ai** as brown liquid; yield: 24.9 mg (36%).

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.79 (m, 1H), 7.40 - 7.28 (m, 4H), 7.17 - 7.08 (m, 2H), 7.01 - 6.93 (m, 5H), 5.43 (s, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 161.2, 152.4 (d, J = 2.7 Hz), 143.0 139.7, 134.9, 134.6, 131.6 (d, J = 8.3 Hz), 130.1, 129.9 (d, J = 8.2 Hz), 127.5, 124.9 (d, J = 3.1 Hz), 123.1 (d, J = 15.3 Hz), 120.1, 116.7 (d, J = 6.4 Hz), 116.5 (d, J = 4.2 Hz), 111.4, 50.4, 21.1. HRMS (ESI) m/z calcd for C₂₁H₁₈FN₂S⁺ (M+H)⁺ 349.1169, found 349.1168.


2-(3-Chlorophenyl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5aj)

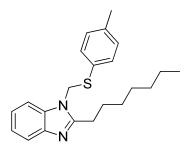
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), 3-chlorobenzaldehyde (**4j**, 45 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5aj** as brown solid; yield: 36.5 mg (50%), mp 82 - 85 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.82 - 7.79 (m, 1H), 7.42 - 7.20 (m, 7H), 6.97 - 6.92 (m, 4H), 5.41 (s, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 143.0, 139.8, 134.9, 134.6, 134.5, 131.2, 130.1, 129.6, 129.5, 129.5, 129.2, 127.2, 123.2, 123.1, 120.1, 111.5, 50.3, 21.2 . HRMS (ESI) m/z calcd for C₂₁H₁₈ClN₂S⁺ (M+H)⁺ 365.0874, found 365.0871.


2-Cyclopropyl-1-((*p*-tolylthio)methyl)-1*H*-benzo[*d*]imidazole (5ak)

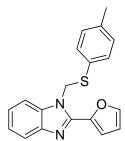
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), cyclopropanecarbaldehyde (**4k**, 30 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5ak** as brown liquid; yield: 18.7 mg (32%).

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.7 Hz, 1H), 7.22 - 7.11 (m, 5H), 7.03 (d, J = 7.9 Hz, 2H), 5.43 (s, 2H), 2.30 (s, 3H), 1.46 - 1.39 (m, 1H), 1.04 - 0.99 (m, 2H), 0.86 - 0.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 142.1, 139.6, 135.3, 134.4, 130.1, 128.1, 122.3, 122.0, 118.9, 109.8, 49.2, 21.1, 8.2, 7.2. HRMS (ESI) m/z calcd for C₁₈H₁₉N₂S⁺ (M+H)⁺ 295.1264, found 295.1266.


2-Cyclohexyl-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5al)

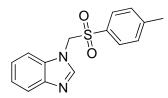
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), cyclohexanecarbaldehyde (**4l**, 48 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5al** as brown liquid; yield: 17.3 mg (26%).

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.4 Hz, 1H), 7.26 - 7.17 (m, 3H), 7.12 - 7.05 (m, 4H), 5.30 (s, 2H), 2.31 (s, 3H), 2.10 - 2.01 (m, 1H), 1.80 - 1.49 (m, 9H), 1.25 - 1.21 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 142.6, 139.7, 135.4, 133.8, 130.1, 128.2, 122.2, 122.1, 119.3, 110.1, 35.9, 31.6, 26.1, 25.7, 21.1. HRMS (ESI) m/z calcd for C₂₁H₂₅N₂S⁺ (M+H)⁺ 337.1733, found 337.1734.

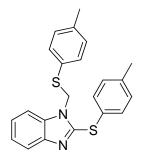

2-Heptyl-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5am)

The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), octanal (**4m**, 64 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1a**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5am** as brown liquid; yield: 17.4 mg (25%).

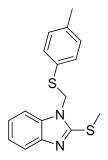
¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.7 Hz, 1H), 7.25 - 7.18 (m, 3H), 7.09 - 7.01 (m, 4H), 5.29 (s, 2H), 2.31 (s, 3H), 1.67 (d, J = 7.3 Hz, 2H), 1.27 (d, J = 16.2 Hz, 10H), 0.88 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 142.5, 139.7, 135.3, 134.1, 130.1, 128.1, 122.2, 122.2, 119.2, 110.1, 49.3, 31.7, 29.5, 28.9, 27.2, 26.9, 22.6, 21.1, 14.1. HRMS (ESI) m/z calcd for C₂₂H₂₉N₂S⁺ (M+H)⁺ 353.2046, found 353.2044.


2-(Furan-2-yl)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (5an)

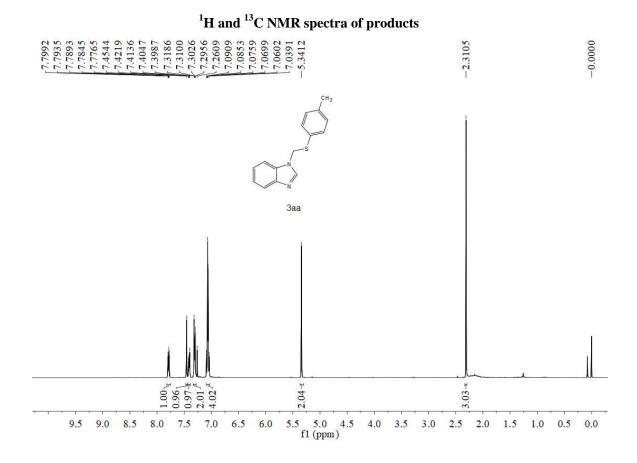
The reaction was conducted with 4-methylbenzenethiol (**2a**, 62 mg, 0.5 mmol), furan-2-carbaldehyde (**4n**, 33 μ L, 0.4 mmol), and 1,2-diaminobenzene (**1fa**, 21.6 mg, 0.2 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1) to give **5an** as brown liquid; yield: 33.3 mg (52%).

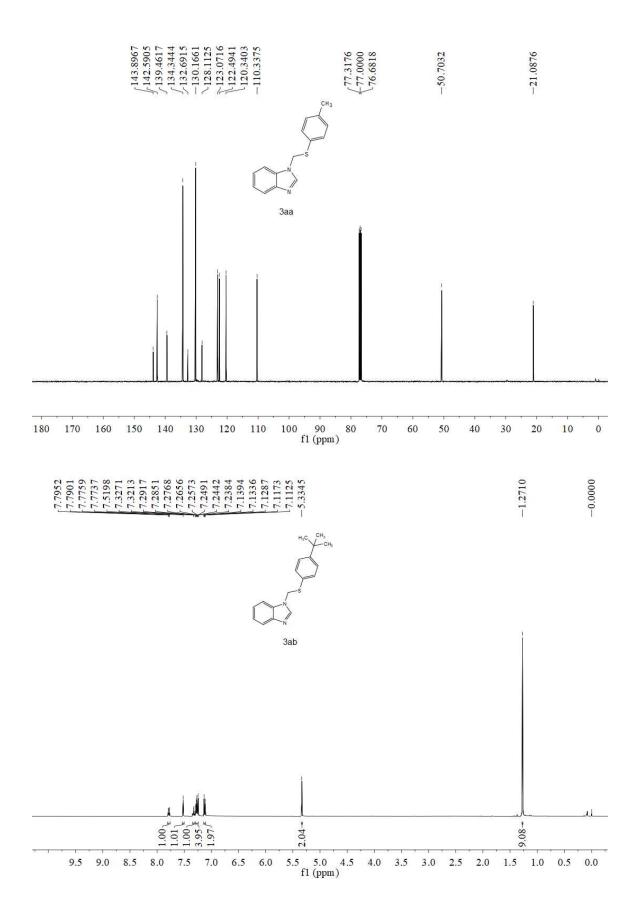

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 1.1 Hz, 1H), 7.25 - 7.20 (m, 1H), 7.17 - 7.12 (m, 1H), 7.06 - 7.00 (m, 3H), 6.95 (d, *J* = 3.5 Hz, 1H), 6.87 (d, *J* = 7.9 Hz, 2H), 6.46 - 6.43 (m, 1H), 5.69 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 143.8, 143.6, 142.9, 139.2, 134.9, 134.6, 129.7, 128.1, 122.9, 122.9, 119.7, 112.7, 111.7, 110.3, 50.4, 21.0. HRMS (ESI) m/z calcd for C₁₉H₁₇N₂OS⁺ (M+H)⁺ 321.1056, found 321.1055.

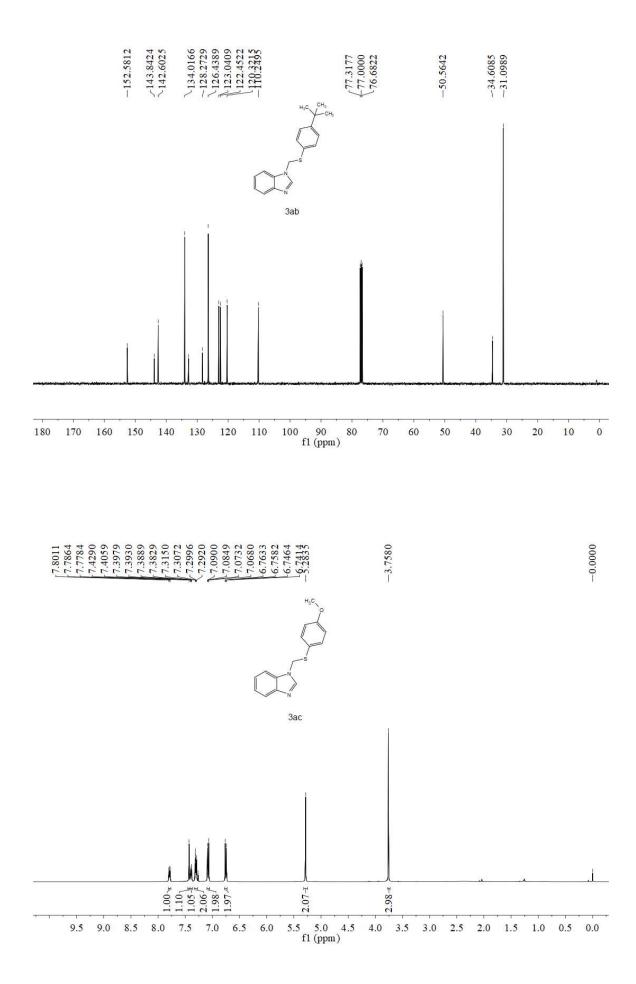
1-(Tosylmethyl)-1*H*-benzo[*d*]imidazole (6aa)

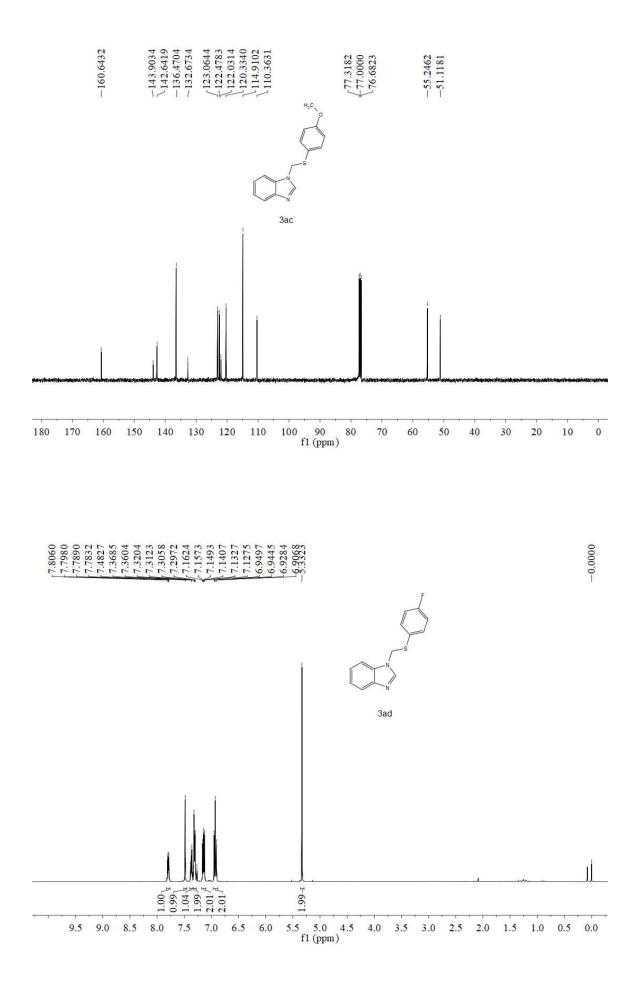

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 9.1 Hz, 1H), 7.20 - 7.17 (m, 3H), 7.08 (d, J = 8.1 Hz, 1H), 5.38 (s, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 142.8, 142.7, 132.9, 132.1, 130.2, 128.8, 123.9, 123.1, 120.4, 109.5, 64.9, 21.6. calcd for C₁₅H₁₅N₂O₂S⁺ (M+H)⁺ 287.0849, found 287.0852.

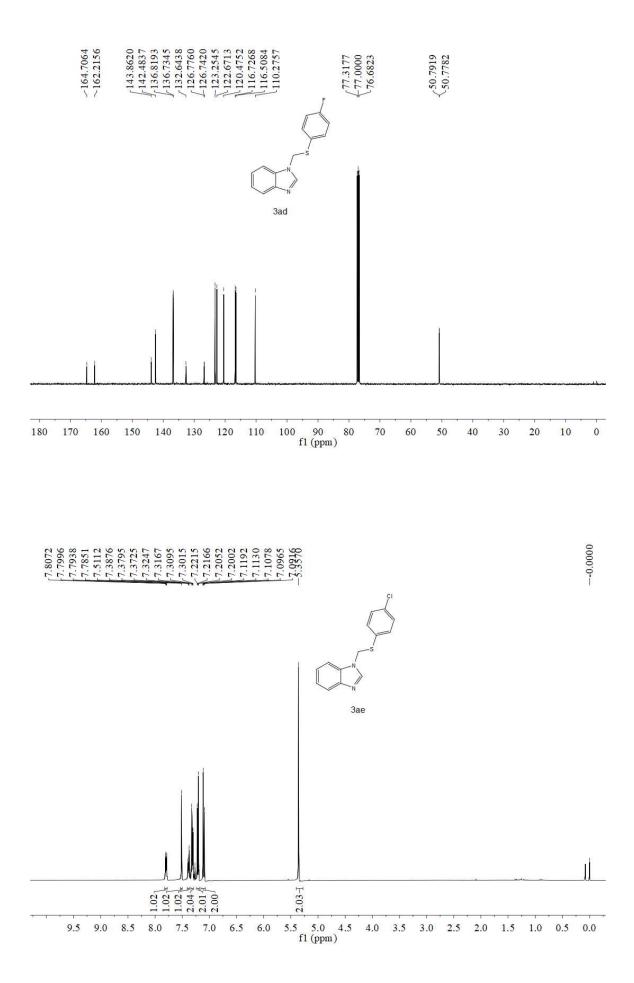
2-(p-tolylthio)-1-((p-tolylthio)methyl)-1H-benzo[d]imidazole (7aa)

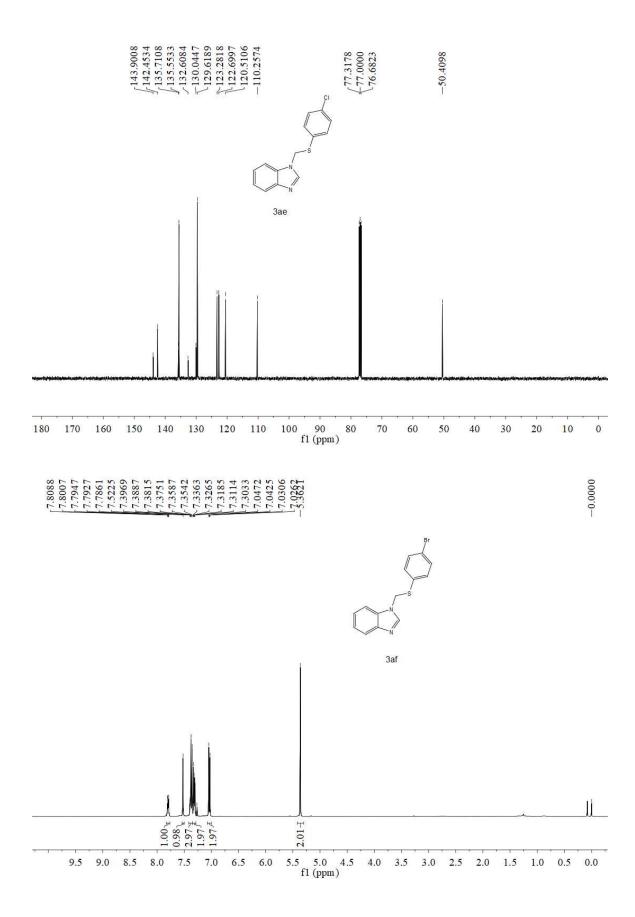

¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.5 Hz, 1H), 7.26 - 7.18 (m, 5H), 7.12 - 7.08 (m, 4H), 7.02 (d, J = 8.0 Hz, 2H), 5.45 (s, 2H), 2.31 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 143.2, 139.5, 138.3, 135.1, 134.8, 131.6, 130.1, 130.0, 127.8, 127.4, 123.0, 122.6, 119.6, 110.5, 49.9, 21.2, 21.1. calcd for C₂₂H₂₁N₂S₂⁺ (M+H)⁺ 377.1141, found 377.1145.

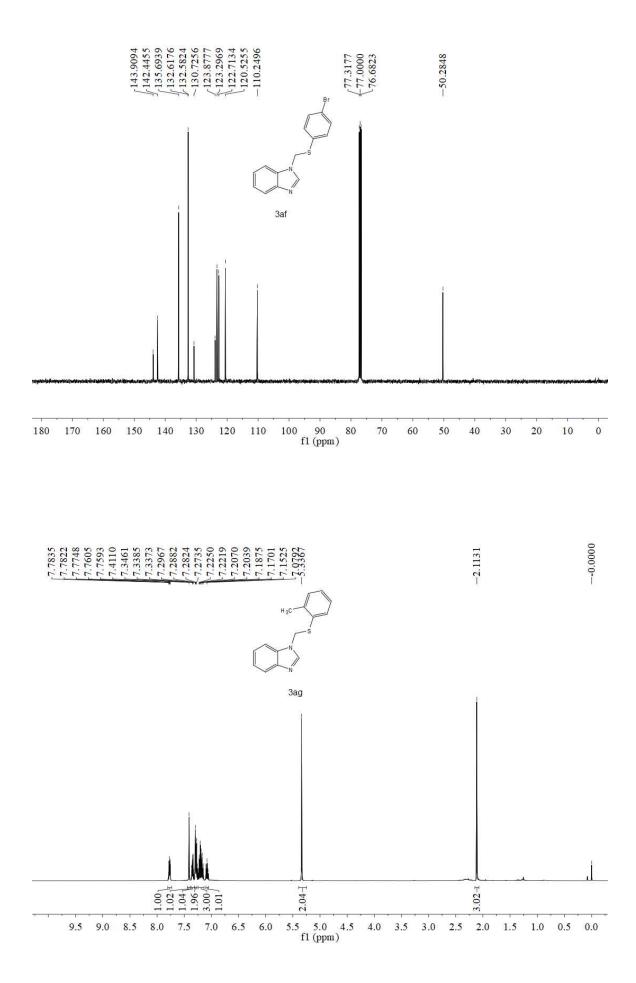

2-(Methylthio)-1-((phenylthio)methyl)-1*H*-benzo[*d*]imidazole (8aa)

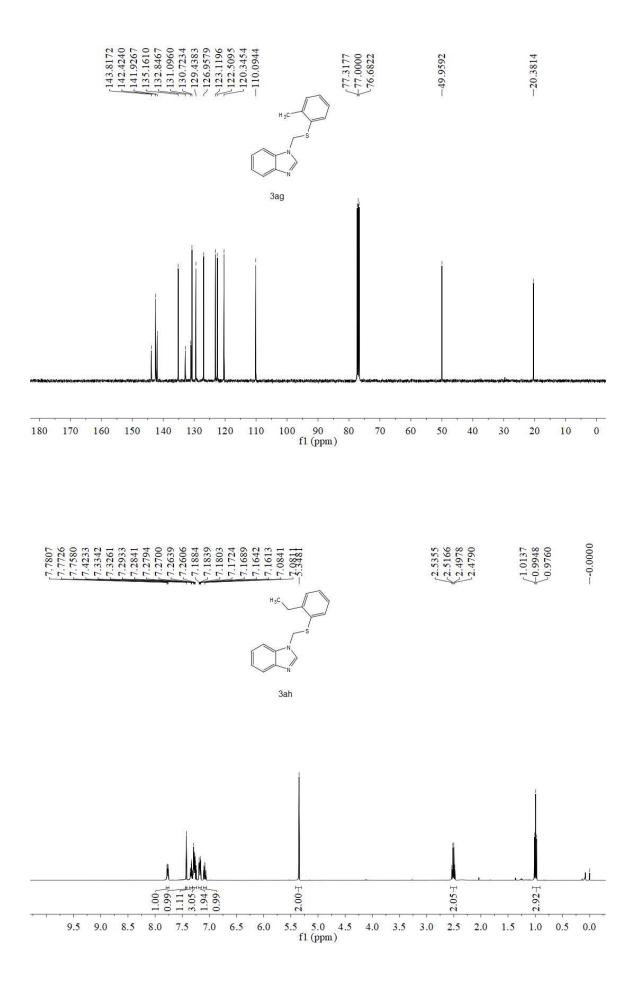


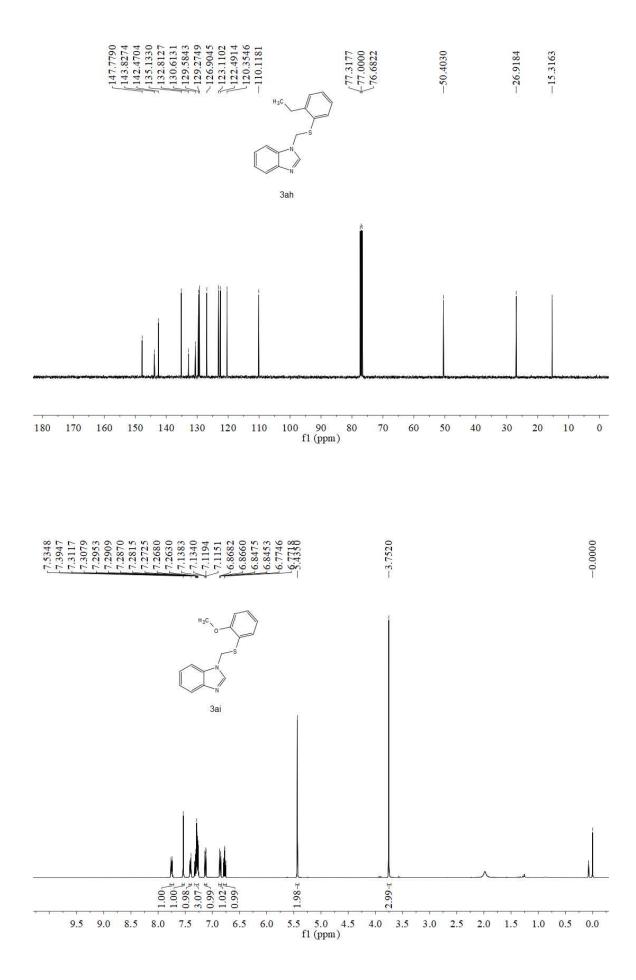

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 3H), 7.03 (t, *J* = 8.8 Hz, 3H), 5.31 (s, 2H), 2.68 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz,

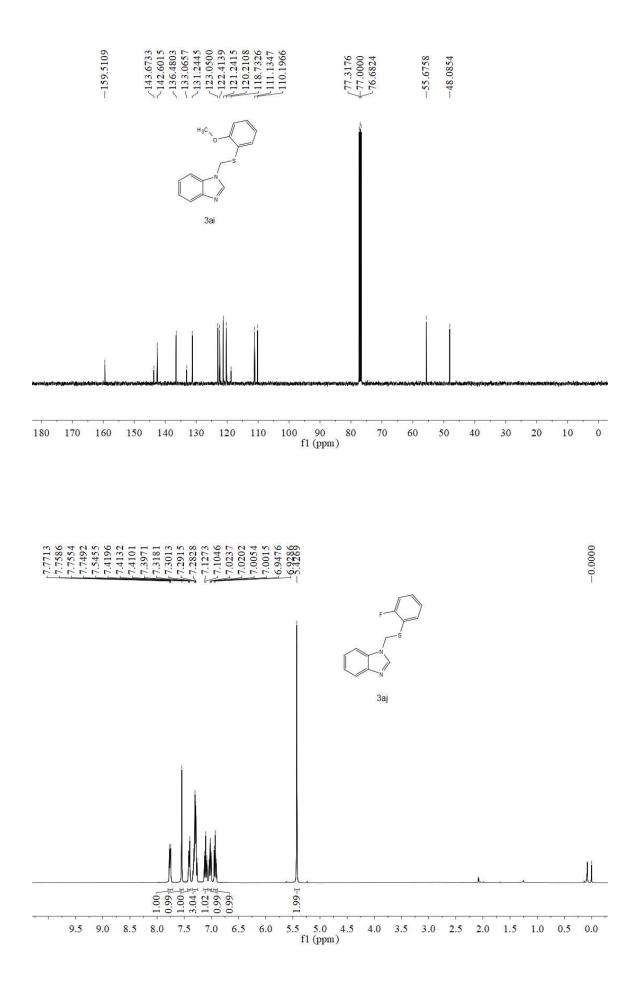

CDCl₃) δ 153.0, 143.2, 139.4, 135.3, 135.1, 129.9, 127.9, 122.2, 122.0, 118.1, 109.6, 49.8, 21.2, 15.2. calcd for C₁₆H₁₇N₂S₂⁺ (M+H)⁺ 301.0828, found 301.0826.

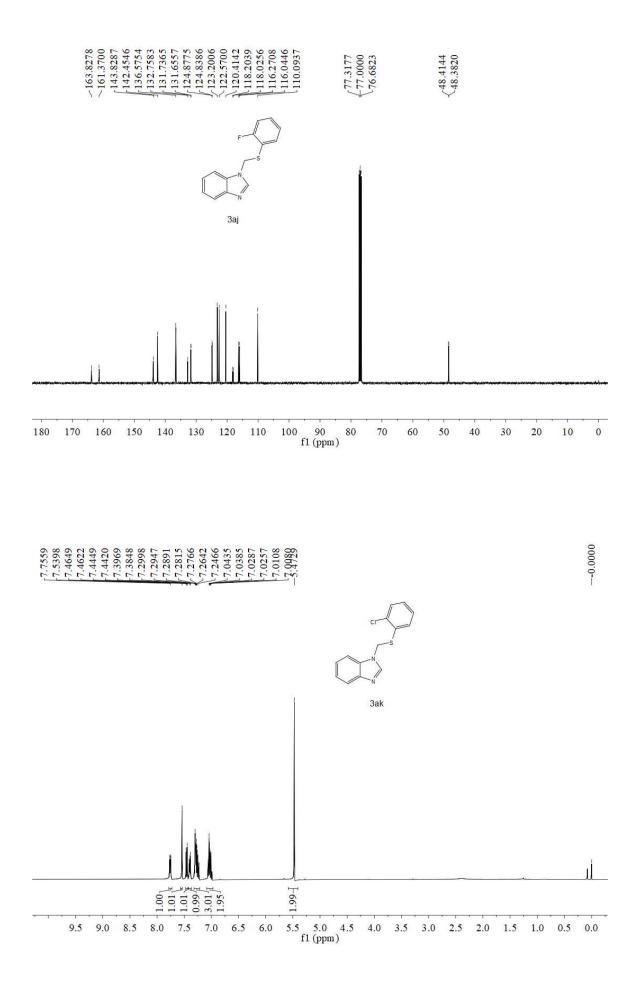


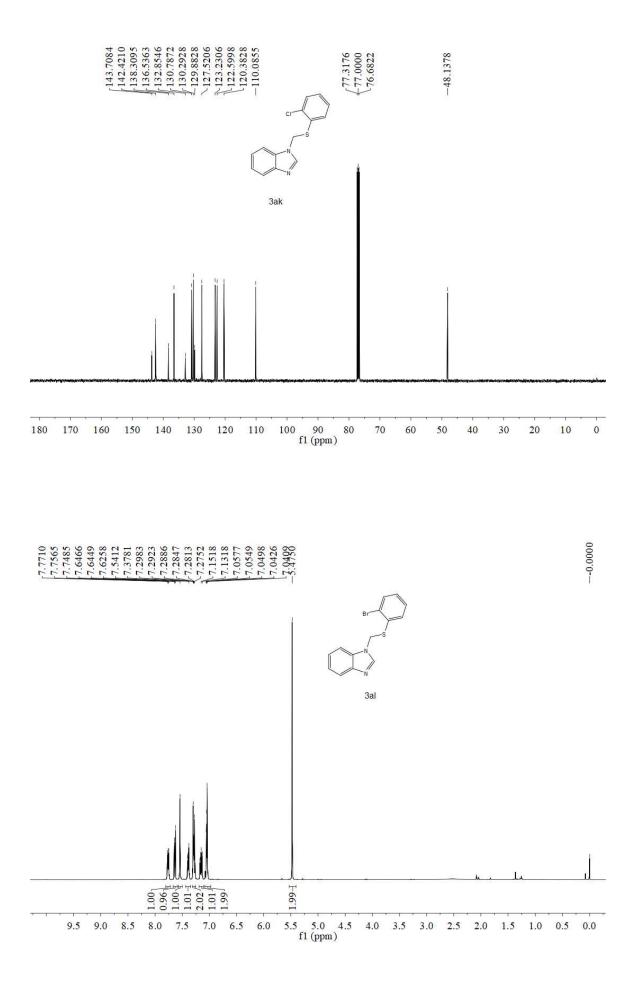


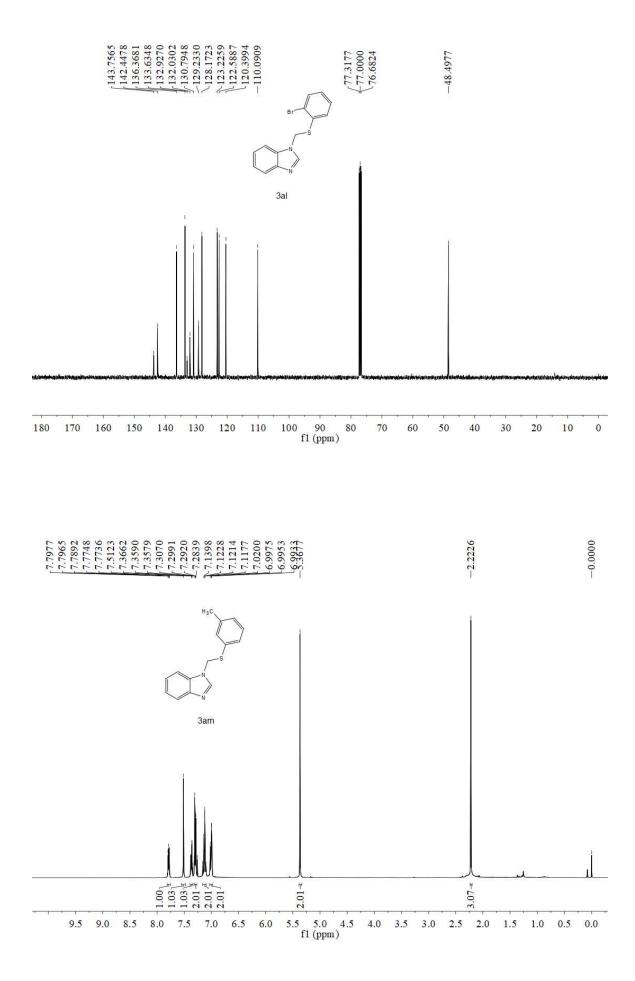


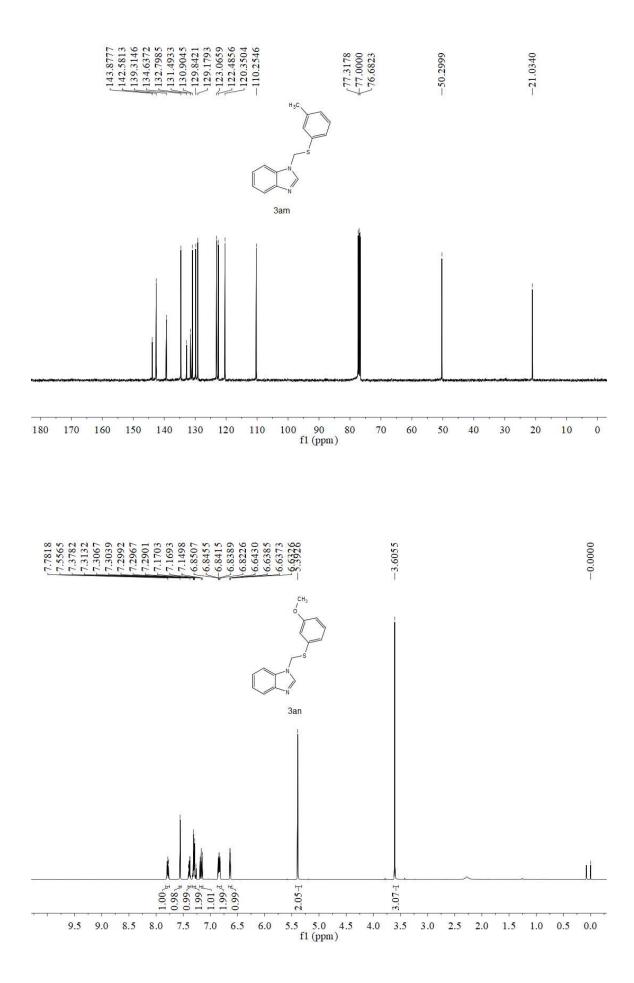


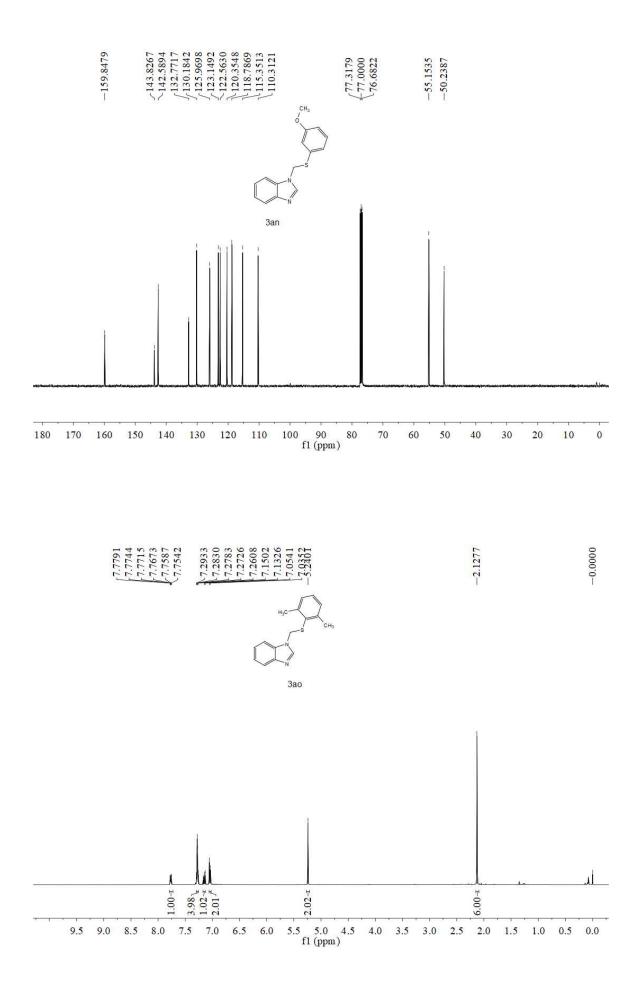


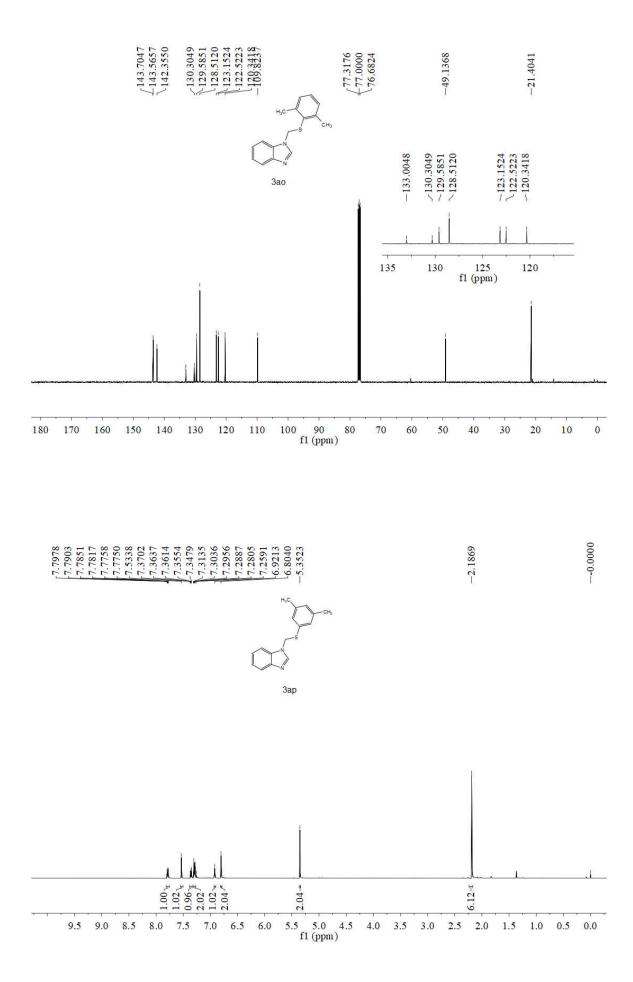


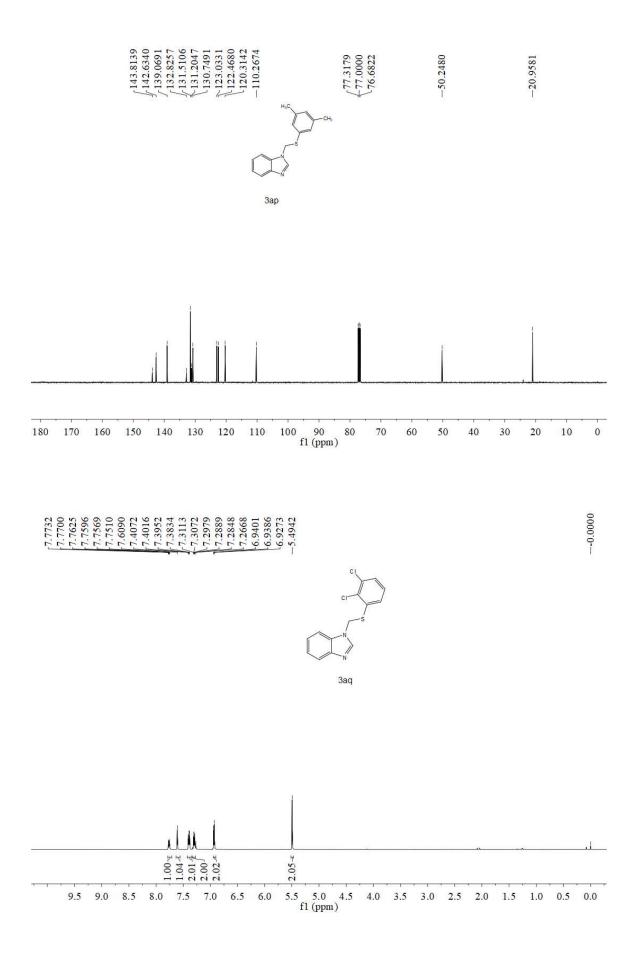


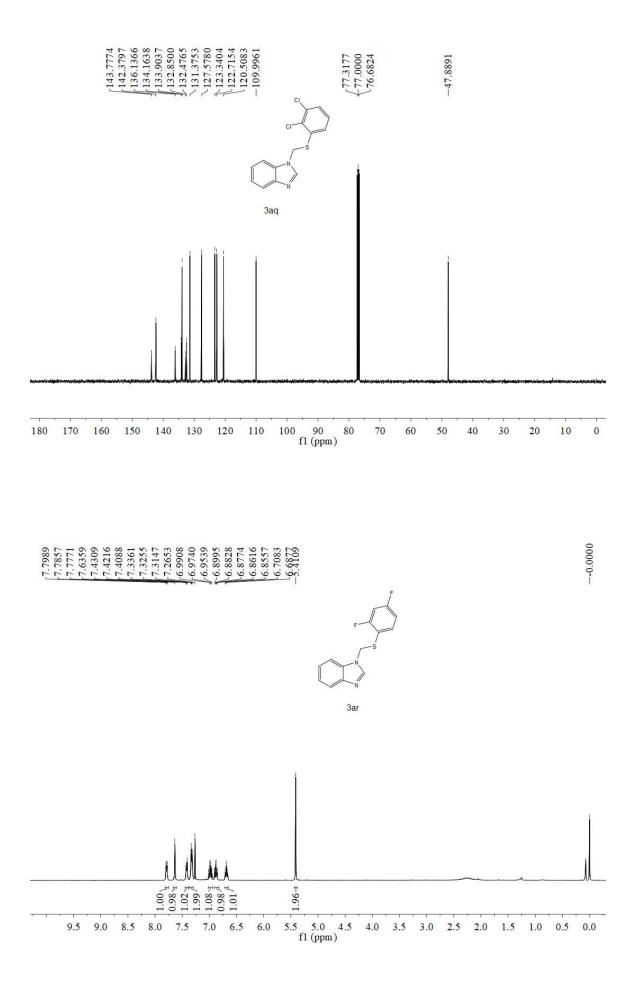


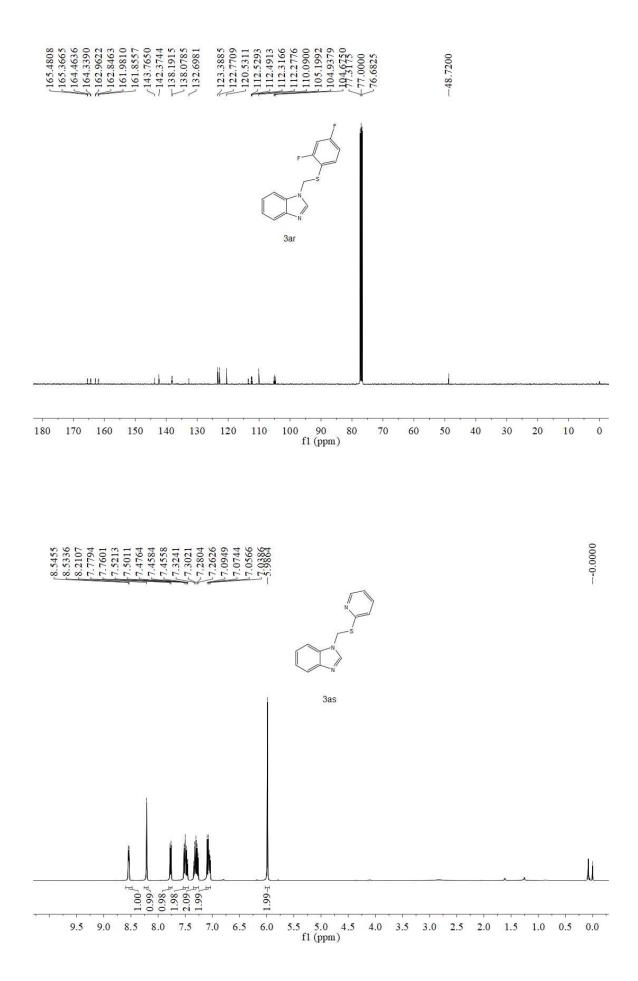


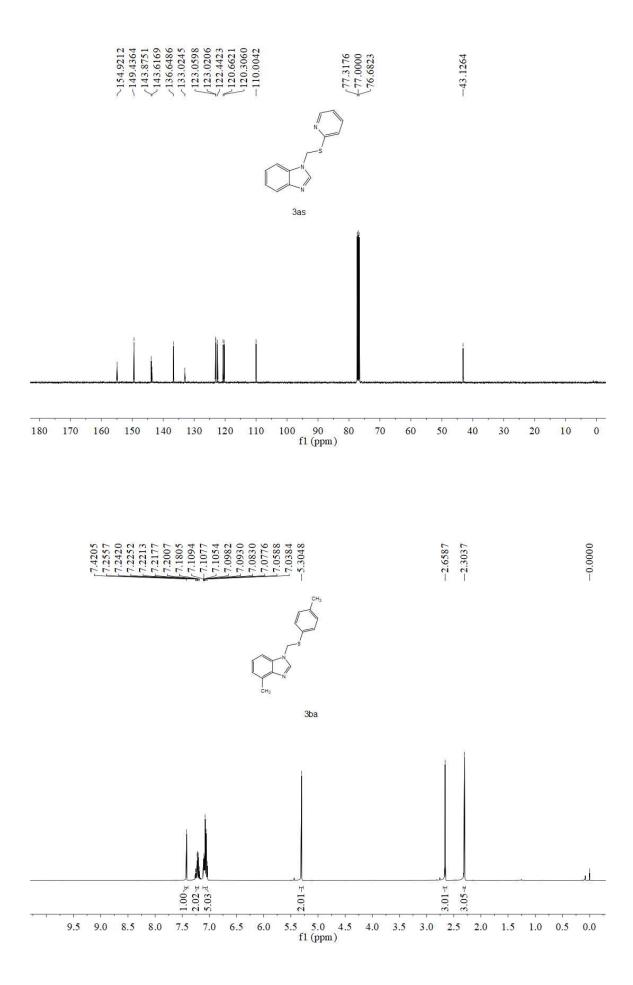


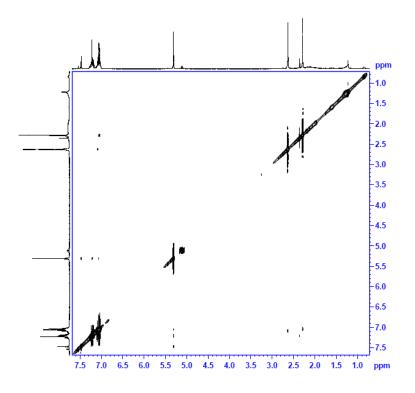


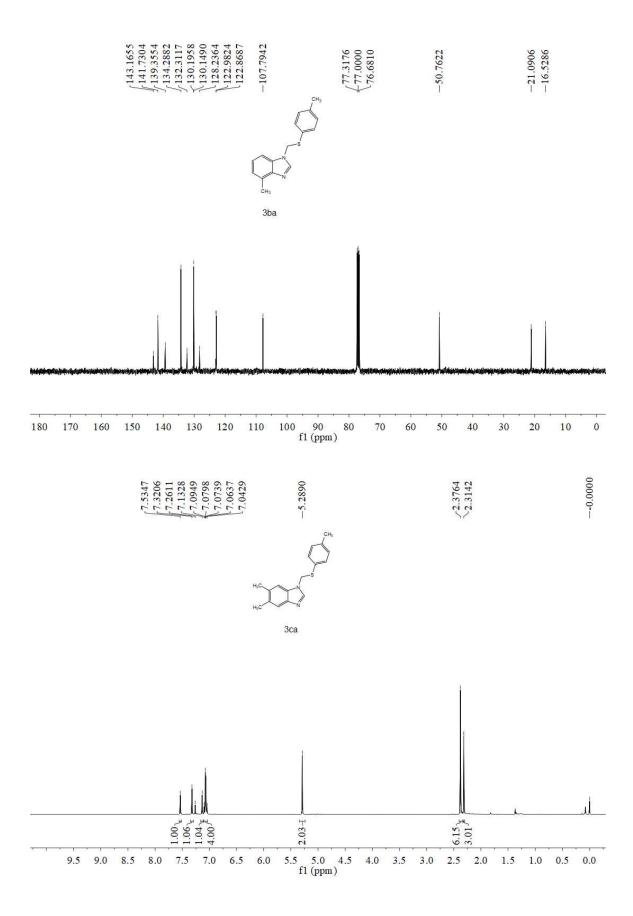


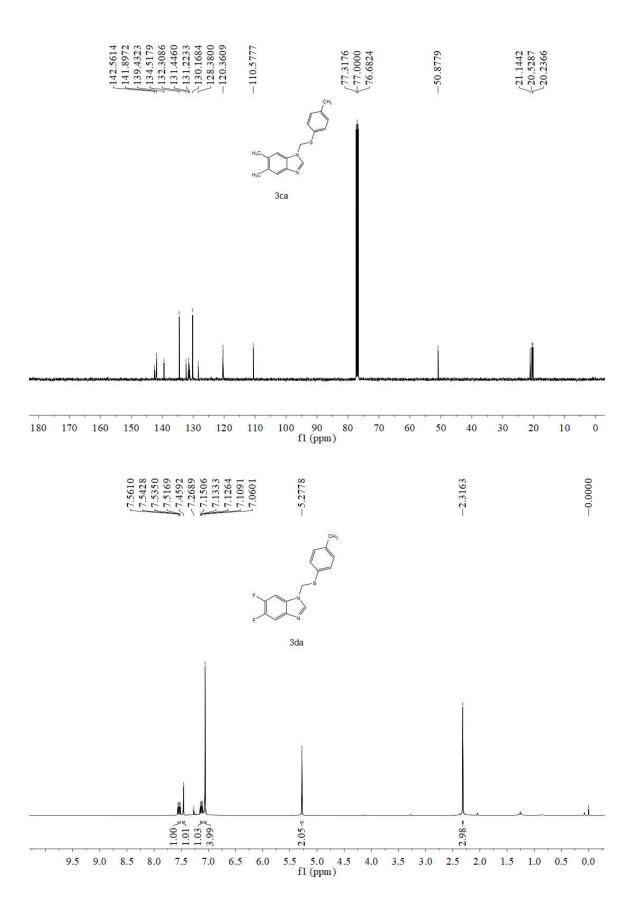


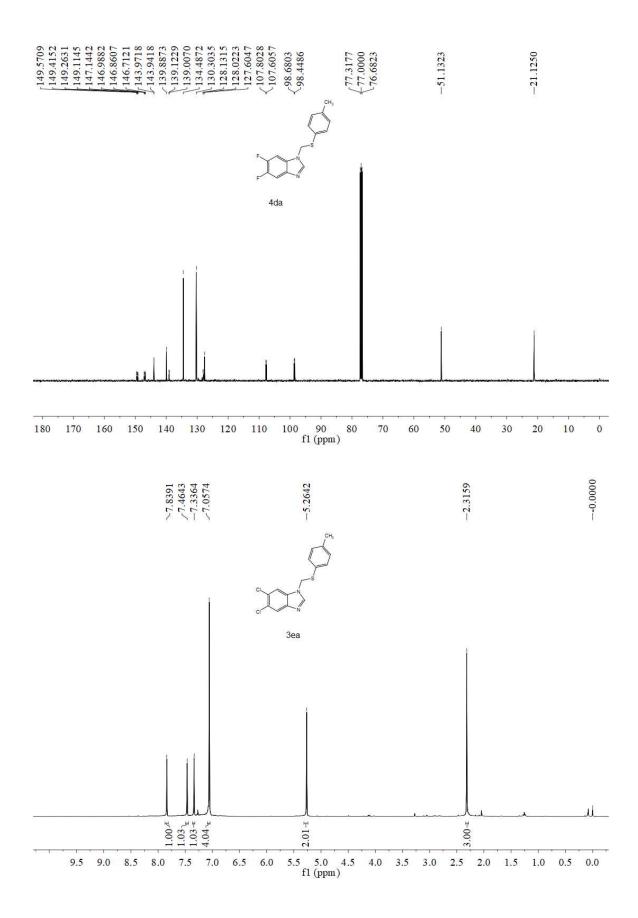


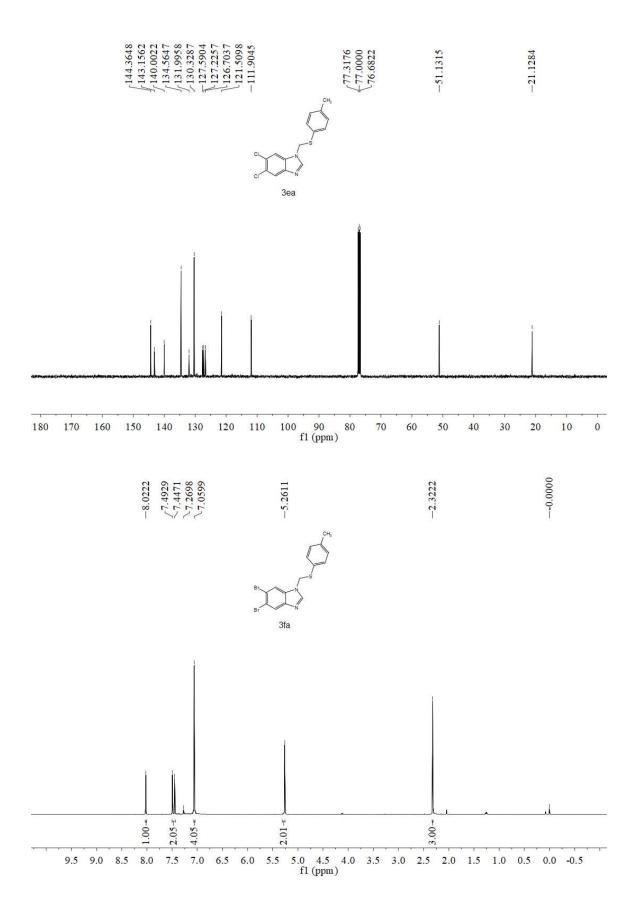


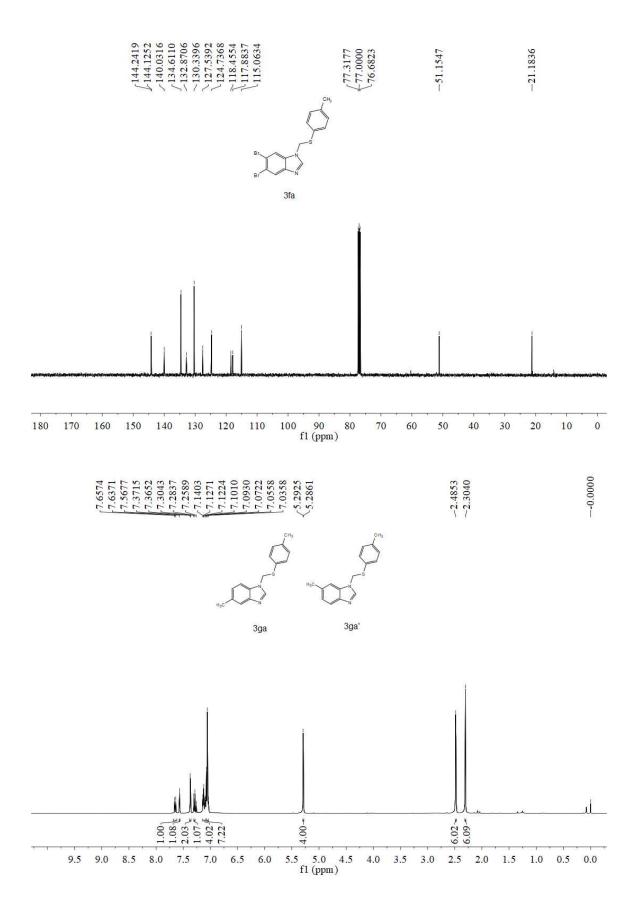


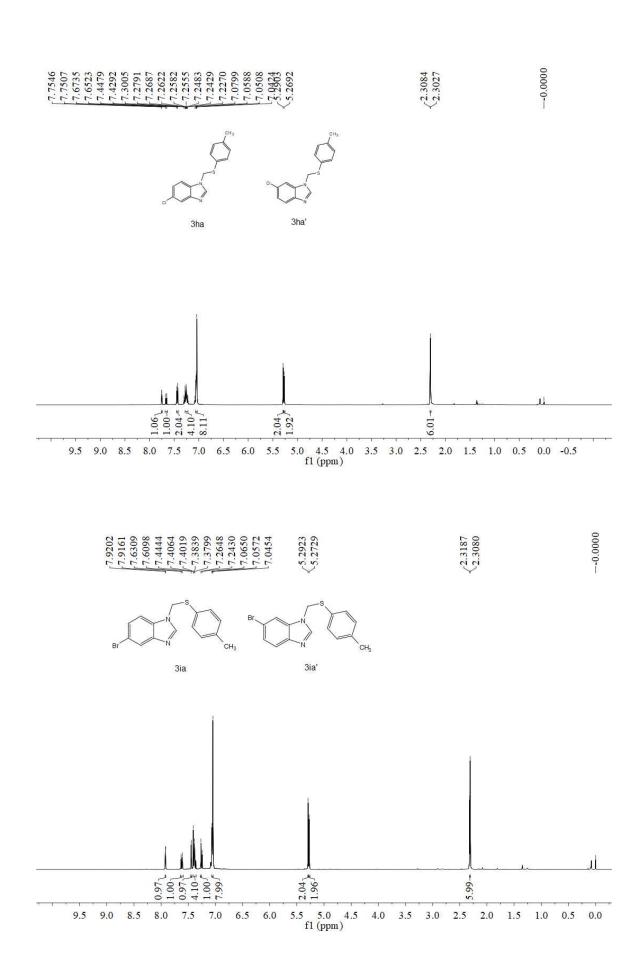


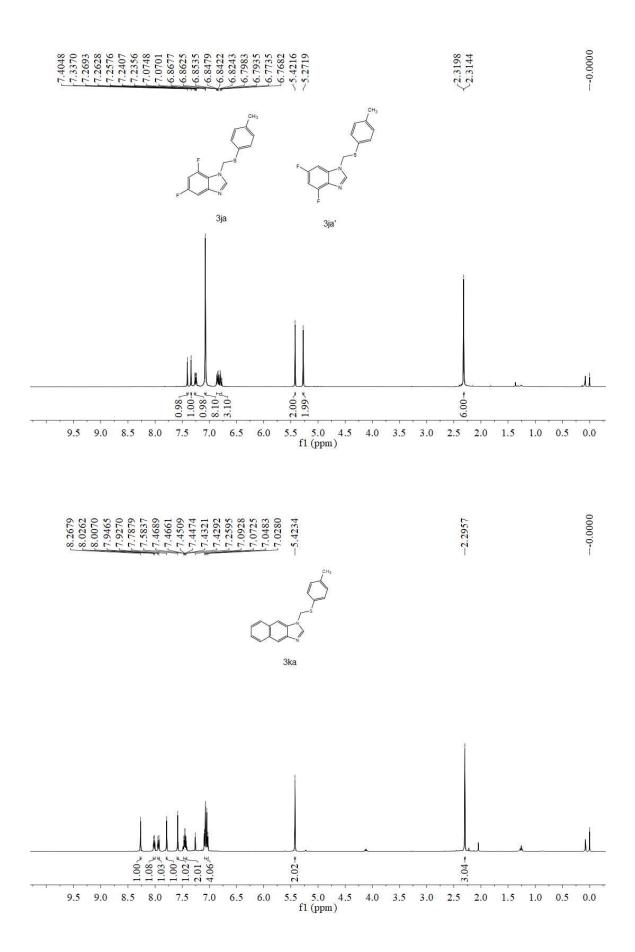


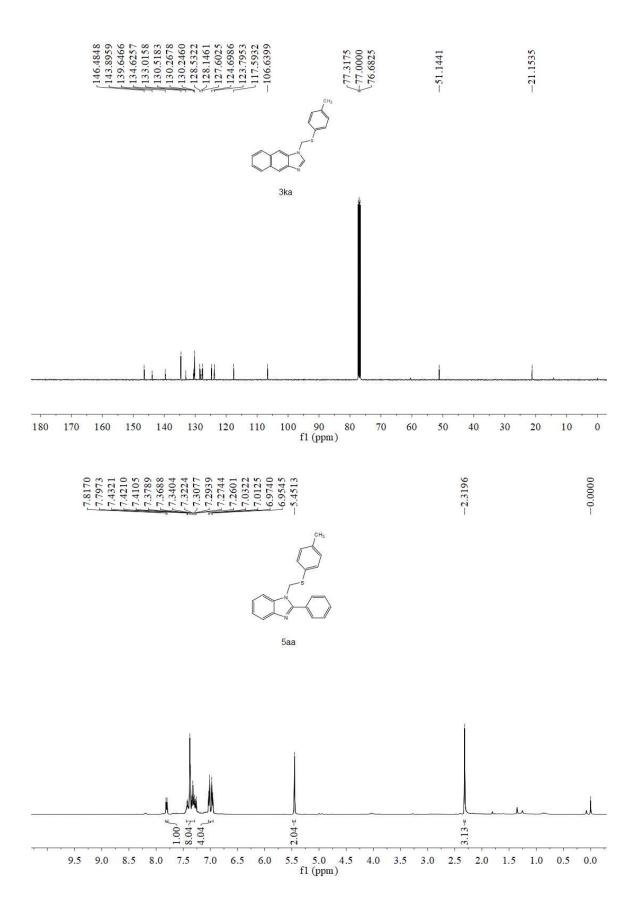


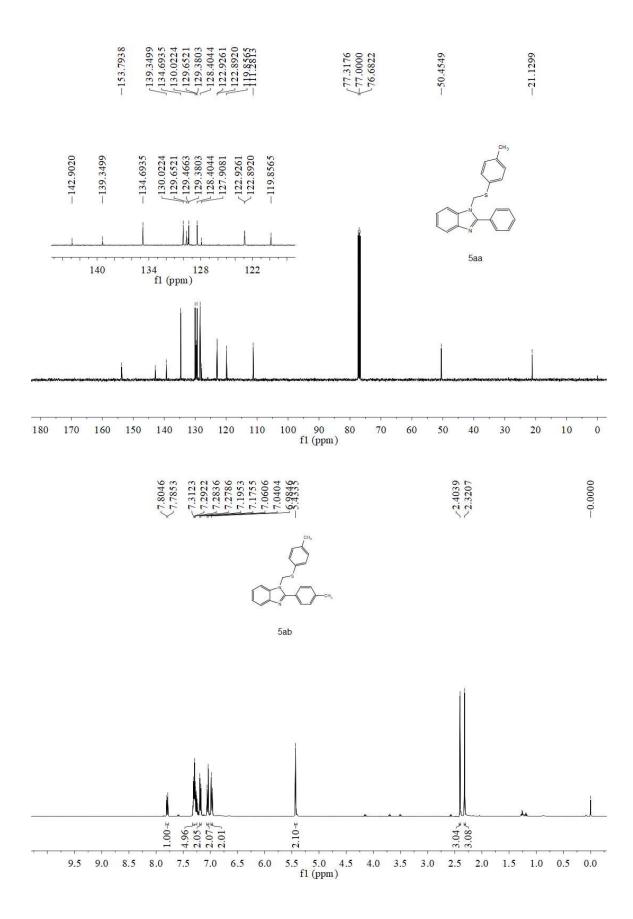


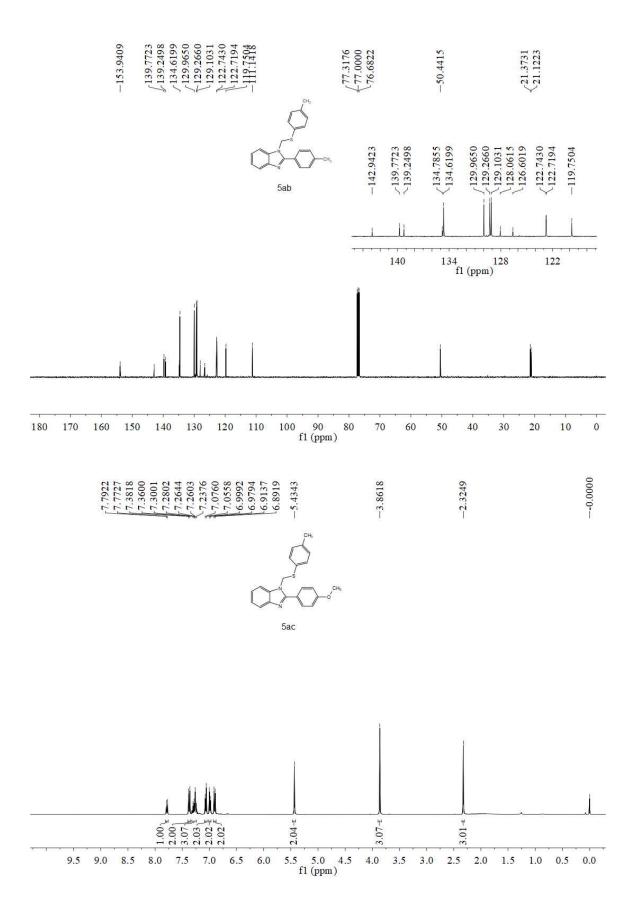

NOESY

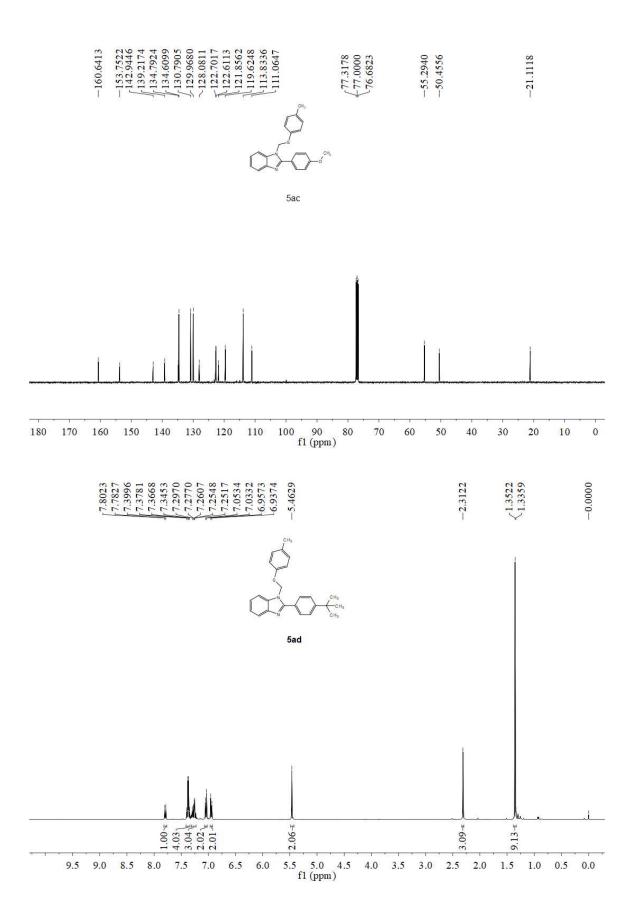


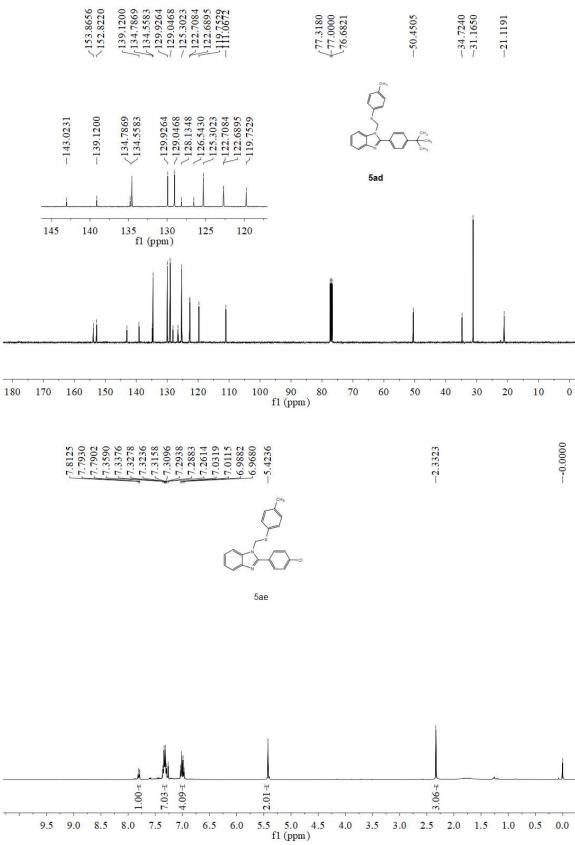


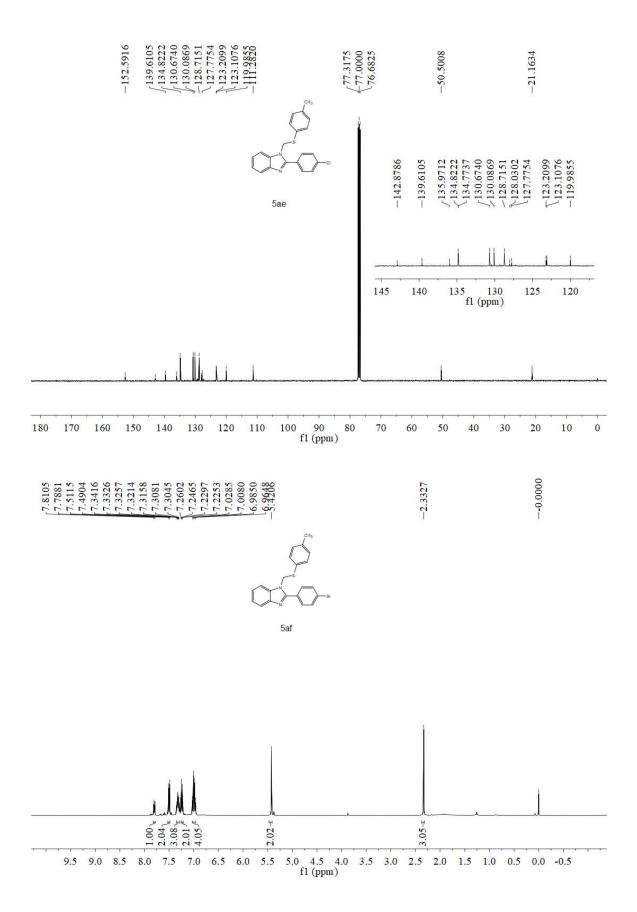


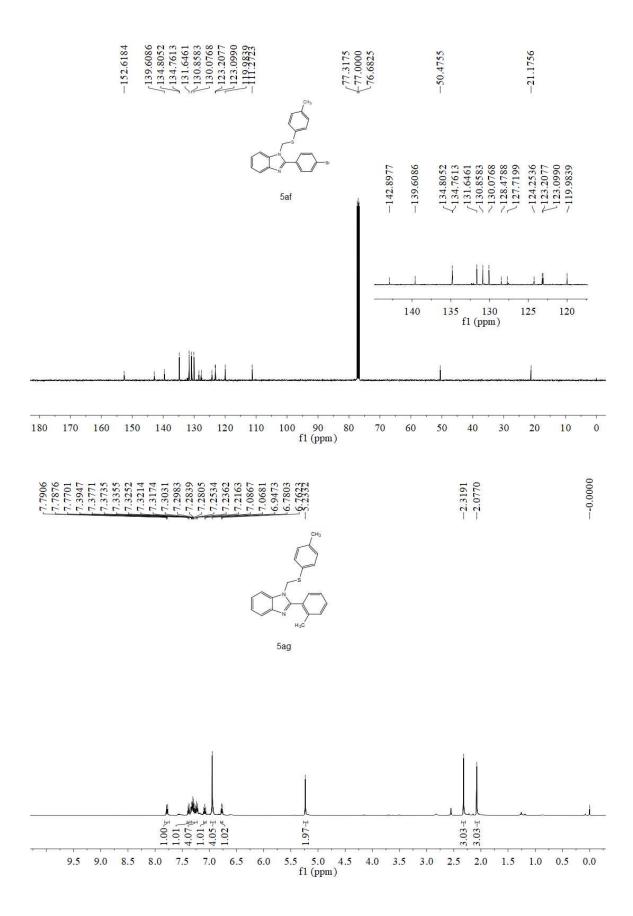




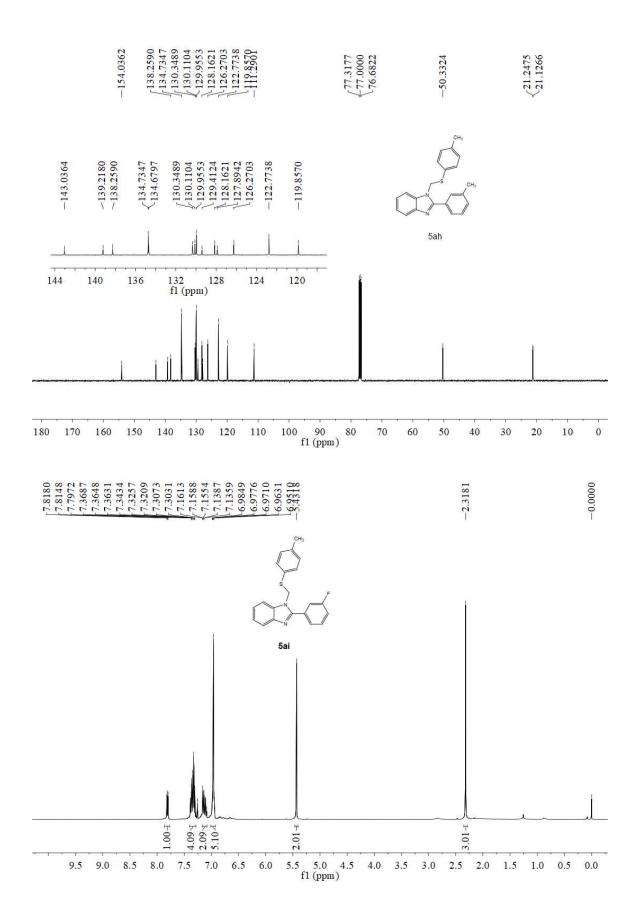


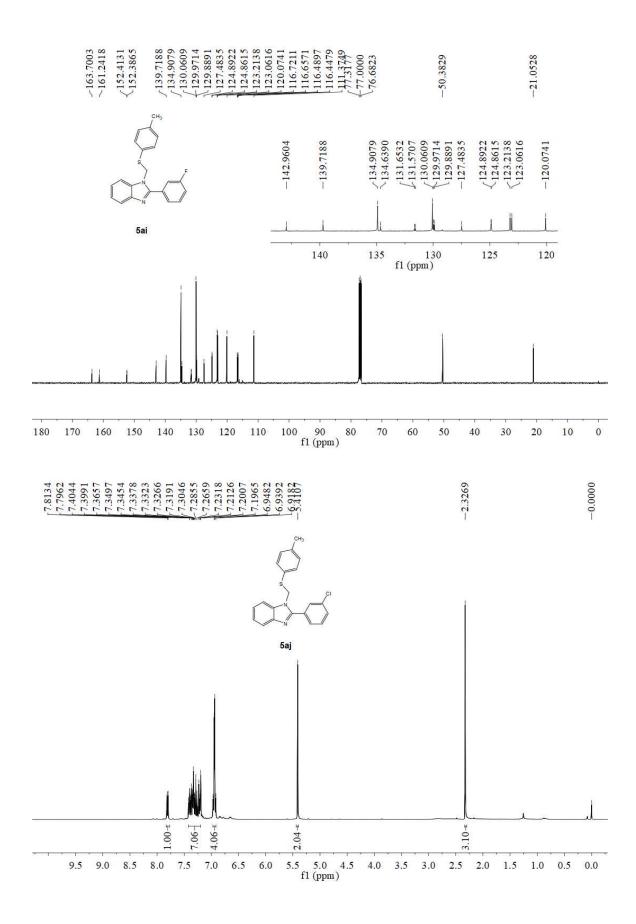


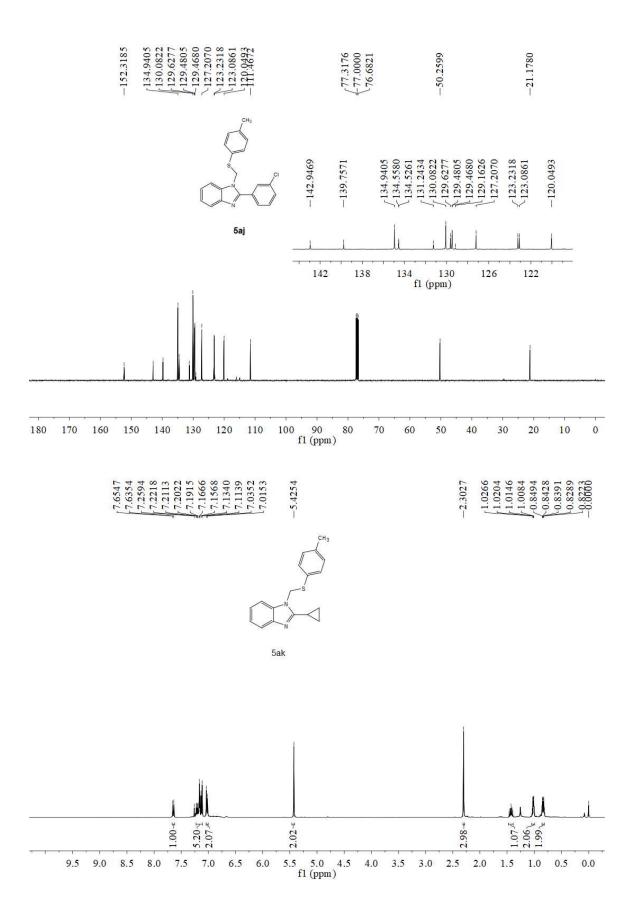


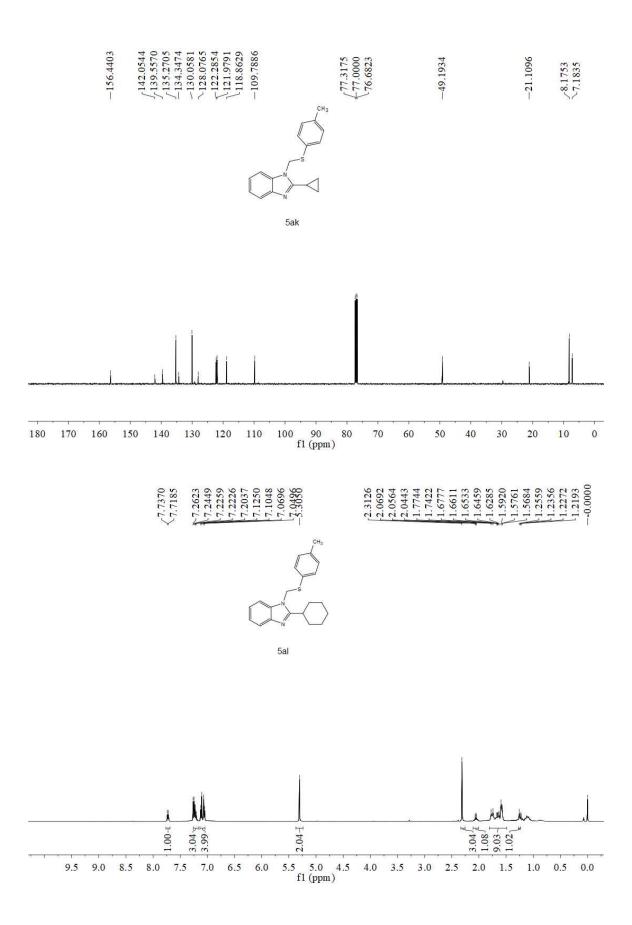


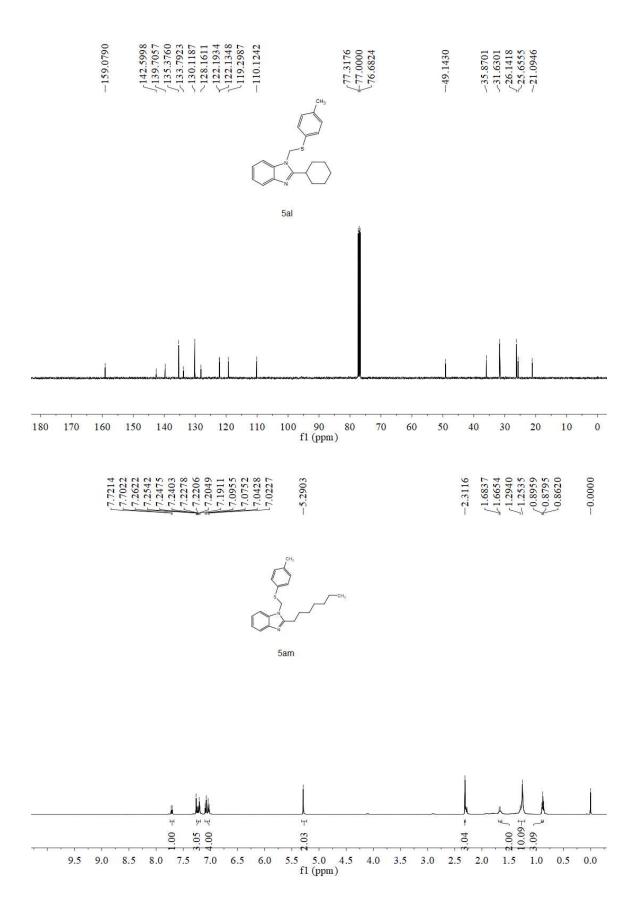


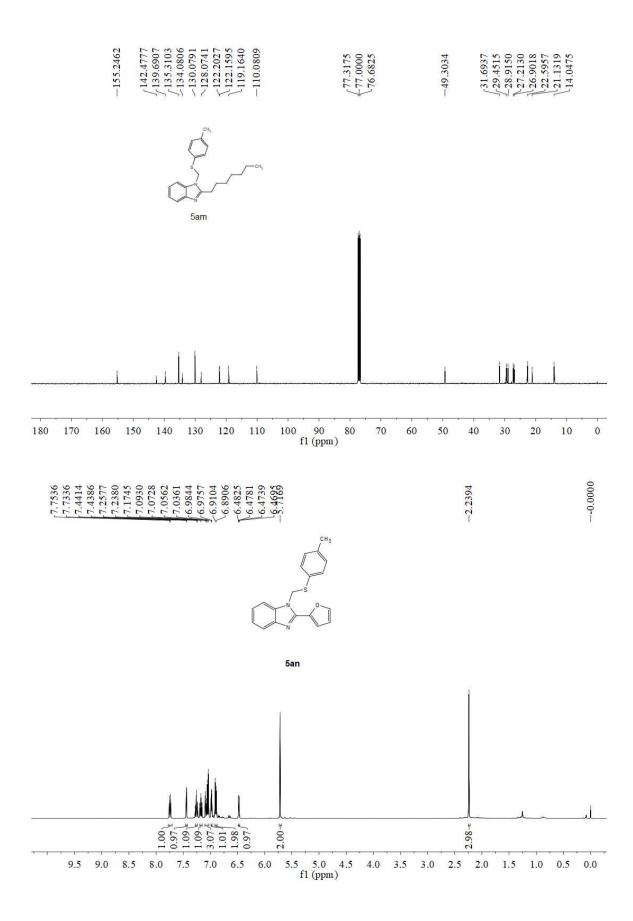


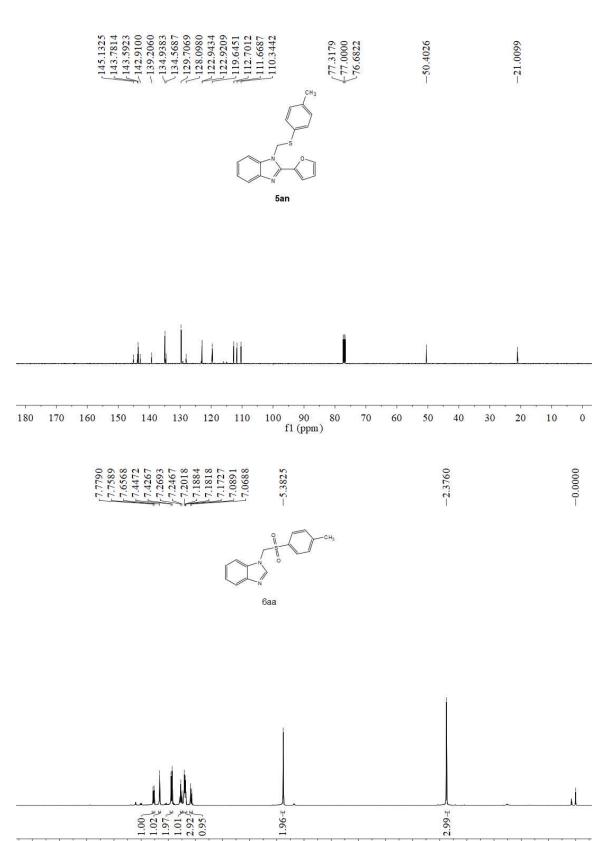


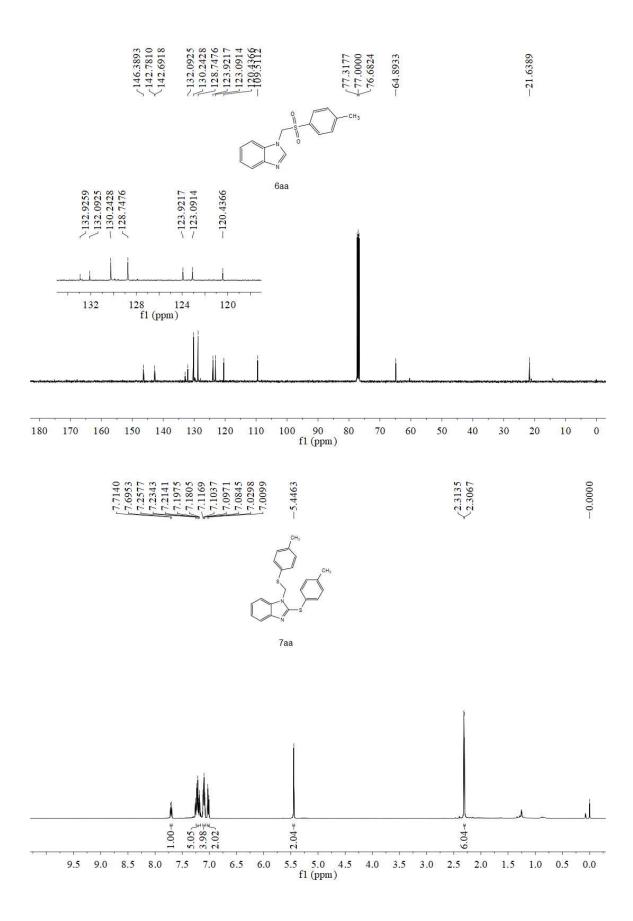


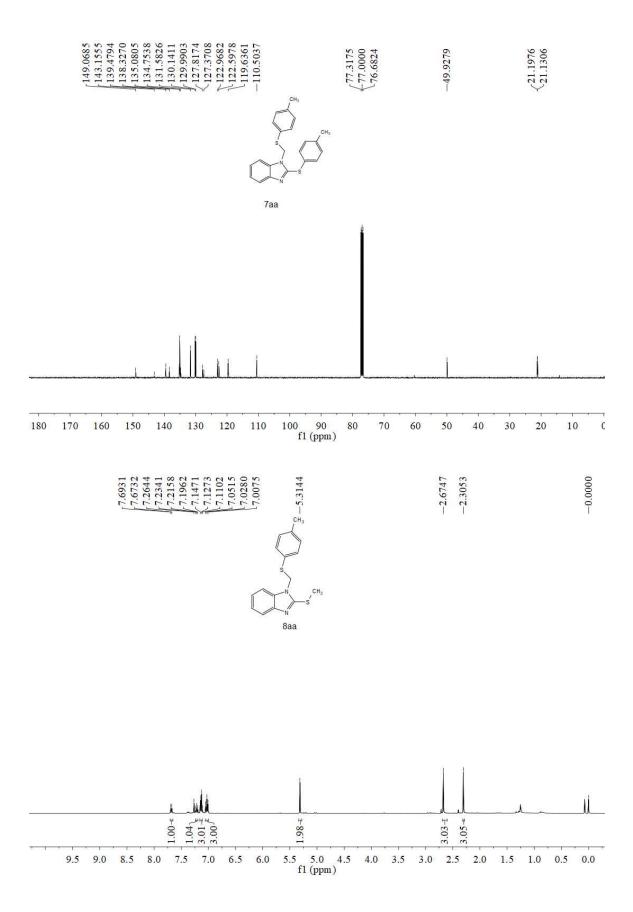


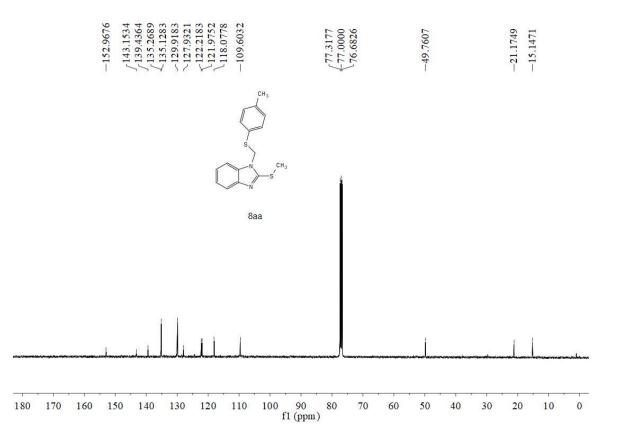












9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

