Electronic Supporting Information for

Synthesis of core-shell magnetic titanate nanofibers composite for the efficient

removal of Sr(II)

Rong Yi,^{1*} Gang Ye² and Jing Chen^{2*}

¹ School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275,

China

² Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084,

China

*Corresponding authors, e-mail: yirong280@163.com, jingxia@mai.tsinghua.edu.cn

Contents

Supporting Figures

Fig. S1	N_2 adsorption-desorption isotherms and pore size distribution of Fe_3O_4/	'titanate
composite		S-2
Fig. S2	EDS spectrum of Fe ₃ O ₄ /titanate composite	S-3
Fig. S3	TEM image of Fe ₃ O ₄ @TiO ₂ microspheres and its product after hydrothermal treatm	nent
with 10 M	NaOH solution	S-4
Fig. S4	XPS high resolution of O1s before Sr(II) treatment	S-5
Fig. S5	XPS high resolution of O1s before and after Sr(II) treatment	S-6
Supporting '	Table	
Table S1	Structure parameters of Fe ₃ O ₄ /titanate nanofiber composite	S-2
Table S2	Element composition for Fe ₃ O ₄ /titanate nanofibers by using EDS analysis	S-3
Table S3	Parameters of adsorption isotherms fitted by Langmuir and Freundlich models	S-7
Table S4	Desorption performance with various conditions of elution	S-8

Supporting Figures

T 11 01 04 4	$\Gamma \cap \Lambda'$	C1	
Table NT Structure	narameters of Fe ₂ U ₄ /filtan	ate nanotiner com	nosite
ruote or otractate	purumeters or 1 0304/ mun		505110

Sample	$S_{BET}(m^2/g)$	Pore Volume(cm ³ /g)	Average pore width(nm)
Fe ₃ O ₄ /titanate nanofiber	56.7	0.2	14.3

Fig. S2. EDS spectrum of Fe₃O₄/titanate composite

Table S2 Element composition for Fe₃O₄/titanate nanofibers by using EDS analysis

Element	Weight%	Atomic%
СК	28.13	43.29
ОК	38.14	44.07
Na K	2.01	1.62
Si K	0.55	0.36
Ті К	6.38	2.46
Fe K	24.78	8.20
Totals	100.00	

Fig. S3 TEM image of Fe₃O₄@TiO₂ microspheres and its product after hydrothermal treatment in 10 M NaOH solution

Fig. S4 XPS high resolution of O1s before Sr(II) treatment

Fig. S5 XPS high resolution of O1s before and after Sr(II) treatment

Langmuir model			Freundlich model		
K_L (L/mg)	$q_{max} (\mathrm{mg/g})$	R^2	K_F	п	R^2
509.58	39.08	0.931	44.36	10.99	0.557

Table S3. Parameters of adsorption isotherms fitted by Langmuir and Freundlich models

No.	Mass of adsorbent(mg)	C _{Sr(II)} (g/L)	<i>q</i> _e (mg/g)	Eluent	V _{Eluent} (m L)	Desorption rate(%)
1	10	0.2	36.2	5% Thiourea	2	14.1
2	10	0.2	36.5	5% Thiourea	4	18.5
3	10	0.2	36.3	5% EDTA(2Na)	2	90.3
4	10	0.2	35.9	5% EDTA(2Na)	4	92.2

Table S4 Desorption performance with various conditions of elution