Electronic Supplementary Information for

A novel fluorescence off-on probe for the sensitive and selective detection of fluoride ions

Lihong Li,*^{ab} Min Zhang,^a Kaijing Chang,^b Yu Kang,^a Guodong Ren,^a Xiaoyu Hou,^a Wen Liu,^b Haojiang Wang,^b Bin Wang^b and Haipeng Diao*^{ab}

^aDepartment of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China

^bSchool of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China

E-mail: lilh@sxmu.edu.cn, diaohp@sxmu.edu.cn

Scheme S1. Synthetic route of probe 1.

Fig. S1. ¹H NMR spectrum of probe **1** (400 MHz, 298 K, CDCl₃).

Fig. S2. 13 C NMR spectrum of probe 1 (100 MHz, 298 K, CDCl₃).

Fig. S3. High resolution ESI-MS of probe 1.

Fig. S4. Absorption and fluorescence emission spectra of coumarin (10 μ M) in a mixture of DMSO and Tris buffer solution (pH 8.0).

Fig. S5. High resolution ESI-MS of the reaction solution of probe **1** (50 μ M) with F⁻ (500 μ M). The peak at m/z = 161.0243 reflects the formation of the fluorophore coumarin.

Fig. S6. Plots of fluorescence intensity *vs*. the reaction time of probe 1 (10 μ M) with varied concentrations of F⁻ (0-200 μ M). The measurements were performed in a mixture of DMSO and Tris buffer solution (pH 8.0) at room temperature. $\lambda_{ex/em} = 385/455$ nm.

Fig. S7. Effect of pH on the fluorescence ($\lambda_{ex/em} = 385/455$ nm) of probe **1** (10 μ M) reacting with F⁻ (200 μ M). The results are the mean \pm standard deviation (SD) of three separate measurements.

Fig. S8. Fluorescence images of test strips for detecting F^- in aqueous solution with varied F^- concentrations (0, 5, 10, 15, 20, and 30 μ M). The test strips were excited at 365 nm by a hand-held UV lamp.

Fig. S9. Fluorescence images of test strips in the presence of various anions (200 μ M). The test papers were excited at 365 nm by a hand-held UV lamp.

Fig. S10. Fluorescence response of probe **1** (10 μ M) to F in real samples. (A) Tap water: samples No. 1-3 from bottom to up; (B) Yingze Lake water: samples No. 1-3 from bottom to up; (C) Toothpaste: samples No. 1-3 from up to bottom. $\lambda_{ex/em} = 385/455$ nm.

Mechanism	Detection limit	Wavelength	Detection media	Literature
P-O cleavage	0.29 μM	$\lambda_{\rm em} = 455 \ \rm nm$	DMSO/Tris buffer (7:3, v/v)	This work
H-bond interaction	Not mentioned	$\lambda_{\rm em} = 495 \ \rm nm$	CH₃CN	Zhou <i>et al.</i> , <i>Spectrochim. Acta A</i> , 2018, 204 , 777
H-bond interaction	3.2 µM	$\lambda_{\rm em} = 510 \ \rm nm$	toluene	Lu <i>et al., Sens.</i> <i>Actuators B</i> , 2018, 270 , 291
Deprotonation of N-H proton	0.28 μM	$\lambda_{\rm em} = 598 \ \rm nm$	DMSO	Yang <i>et al., Sens.</i> <i>Actuators B</i> , 2015, 210 , 784
Si-O cleavage	0.59 μΜ	$\lambda_{\rm em} = 564 \ \rm nm$	CH ₃ CN/HEPES buffer (8:2, v/v)	Yoo <i>et al., RSC Adv.,</i> 2016, 6 , 19910
Si-O cleavage	3.5 μΜ	$\lambda_{\rm em} = 480 \ \rm nm$	ethanol	Zhang et al., Anal. Bioanal. Chem., 2017, 409 , 2075
Si-O cleavage	1.03 μM	$\lambda_{\rm em} = 523 \text{ nm}$	DMSO	Roy et al., Chem. Coummun., 2014, 50 , 5510
Si-O cleavage	0.17 μΜ	$\lambda_{\rm em} = 485 \ \rm nm$	CH ₃ CN	Zhang <i>et al.</i> , <i>Chem.</i> <i>Commun.</i> , 2014, 50 , 14021

Table S1. Comparison of probe 1 with other recently reported fluorescent probes for F

Si-O cleavage	Not mentioned	$\lambda_{\rm em} = 589 \ \rm nm$	CH ₃ CN/H ₂ O (1:1, v/v) or CH ₃ CN	Kim <i>et al.</i> , <i>Org. Lett.</i> , 2007, 9 , 3109
Si-O cleavage	85 nM	$\lambda_{\rm em} = 718 \ \rm nm$	DMSO/H ₂ O (95:5, v/v)	Cao et al., Tetrahedron Lett., 2012, 53 , 2107
Si-O cleavage	0.1 μΜ	$\lambda_{\rm em} = 682 \ \rm nm$	CH ₃ CN	Xie <i>et al., J. Fluoresc.,</i> 2016, 26 , 1737
Si-O cleavage	0.12 μΜ	$\lambda_{\rm em} = 676 \ \rm nm$	CH ₂ Cl ₂	Cao <i>et al., RSC Adv.,</i> 2012, 2 , 418
Si-O cleavage	17.2 μΜ	$\lambda_{\rm em} = 493 \ \rm nm$	DMF/HEPES buffer (7:3, v/v)	Zhou <i>et al.</i> , <i>Dyes</i> <i>Pigments</i> , 2018, 158 , 277
P-O cleavage	9.8 nM	$\lambda_{\rm em} = 536 \ \rm nm$	DMSO/Tris buffer (7:3, v/v)	Kim et al., Dyes Pigments, 2015, 112 , 170
P-O cleavage	48 nM	$\lambda_{\rm em} = 669 \ \rm nm$	DMSO/Tris buffer (7:3, v/v)	Du <i>et al., Anal. Chim.</i> Acta, 2018, 1030 , 172.