Supplementary material

A novel quartz-crystal microbalance humidity sensor based on

solution-processible indium oxide quantum dots

Hao Kan^{a,b}, Min Li^c, Hui Li^a, Chong Li^a, Jian Zhou^d, Chen Fu^a, Jingting Luo^{a*}, Yongqing Fu^e

^a Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
^b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
^c School of Electrical Engineering, Nanjing Institute of Industry Technology, 210023, Nanjing, China
^d State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
^e Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, Newcastle NE1 8ST, UK

*Corresponding author: Jingting Luo; Email: luojt@szu.edu.cn

Figure S1. High-magnification SEM of the (a) QCM-1, (c) QCM-2 and (e) QCM-3 before annealing, high-magnification SEM of (b) QCM-1, (d) QCM-2 and (f) QCM-3 after annealing.

Figure S2. The response/recovery time of QCM-3 under different relative humidity.