Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information

Dissolution of metal oxides in task-specific ionic liquid

Janine Richter,^a Michael Ruck^{a,b}

^a Technische Universität Dresden

^b Max-Planck-Institute for Chemical Physics of Solids, Dresden

PXRD of the reagents ThO₂ and [Hbet][NTf₂]

Fig. S1 Measured diffractogram of the reagent ThO₂ (black) compared to the ThO₂ pattern calculated from single-crystal data (green) in the range $5^{\circ} \le 2\theta \le 90^{\circ}$.

Fig. S2 Experimental diffractogram of the synthesised [Hbet][NTf₂] compared to the reflection patterns of [Hbet][NTf₂] (middle) and [(Hbet)₃(bet)][NTf₂]₃ (bottom) simulated from single crystal data¹ in the range $5^{\circ} \le 2\theta \le 50^{\circ}$.

Fig S3 Rietveld refinement plot of the reagent [Hbet][NTf₂]. Peak positions of [Hbet][NTf₂] are marked in orange and of [(Hbet)₃(bet)][NTf₂]₃ in brown vertical bars. Ca. 66 % of [Hbet][NTf₂] and 34 % of [(Hbet)₃(bet)][NTf₂]₃ are present in the sample. $R_p = 3.8102$, $R_{wp} = 5.3084$, $R_{exp} = 7.7653$, GOF = 0.68.

Reaction mixtures in pure [Hbet][NTf₂]

Table S1 Product appearance and phases identified by PXRD of the reaction mixtures of a metal oxide and [Hbet][NTf₂]. A molar ratio of $n_{\rm M}$: $n_{\rm IL} = 1$: 4 and heating to 175 °C for 24 h was applied. Pastelike products crystallised when brought on a PXRD sample holder.

Oxide	Product appearance	PXRD phases
Al_2O_3	White powder in colourless liquid	[Hbet][NTf ₂]
BaO	White paste	Many unidentified reflections
Bi ₂ O ₃	White powder in colourless liquid	Many unidentified reflections
CaO	Clear, colourless solution	-
Co ₃ O ₄	Black powder in slightly violet liquid	Co ₃ O ₄
Cr ₂ O ₃	Green powder in colourless liquid	Cr ₂ O ₃
Cu ₂ O	Blue and white crystals	Cu ₂ O, [Hbet][NTf ₂], [Cu ₂ (bet) ₄ (NTf ₂) ₂][NTf ₂] ₂
CuO	Blue and white irregular crystals	[Cu ₂ (bet) ₄ (NTf ₂) ₂][NTf ₂] ₂ , unidentified reflections
Fe ₂ O ₃	Red powder in colourless liquid	Fe ₂ O ₃
Ga ₂ O ₃	White powder in colourless liquid	Ga ₂ O ₃ , [Hbet][NTf ₂]
GeO ₂	White powder in colourless liquid	GeO ₂ , [Hbet][NTf ₂]
In ₂ O ₃	White powder in colourless liquid	In_2O_3 , [Hbet][NTf_2]
MgO	Clear, colourless solution	-
MnO	Pale orange, clear paste	Many unidentified reflections
MnO ₂	Black powder in colourless liquid	MnO ₂
MoO ₃	White powder in colourless liquid	MoO ₃ , [Hbet][NTf ₂]
Nb ₂ O ₅	White powder in colourless liquid	Nb ₂ O ₅ , [Hbet][NTf ₂]
NiO	Green powder in colourless liquid	NiO, [(Hbet) ₃ (bet)][NTf ₂] ₃
PbO	Clear, colourless solution	-
PbO ₂	Clear, colourless solution	-
ReO ₃	Red crystals in colourless liquid	ReO ₃
Sb ₂ O ₃	White powder in colourless liquid	Sb ₂ O ₃ , [(Hbet) ₃ (bet)][NTf ₂] ₃
SnO	White powder in brown liquid	SnO, [Hbet][NTf ₂]

SrO	Pale orange, opaque paste	Many unidentified reflections
ThO ₂	Black powder in colourless liquid	ThO _{2,} few unidentified reflections (present in reagent)
TiO ₂	White powder in colourless liquid	TiO ₂ , [Hbet][NTf ₂]
V ₂ O ₃	Small blue-green crystals in colourless liquid	Several unidentified reflections
V ₂ O ₅	Yellow powder in brown liquid	V ₂ O ₅ , many unidentified reflections
WO ₃	Yellow powder in colourless liquid	WO ₃
ZnO	First colourless solution gels to white paste	Many unidentified reflections

Fig. S4 Experimental diffractograms of the samples Al₂O₃, BaO, Bi₂O₃, Co₃O₄, Cr₂O₃. Cu₂O, CuO, Fe₂O₃, Ga₂O₃, GeO₂, In₂O₃, MnO and MnO₂ + [Hbet][NTf₂] (black) in the range $5^{\circ} \le 2\theta \le 90^{\circ}$ compared to the reflection patterns of the respective metal oxide if present (green) and (BiO)₂CO₃ (violet) simulated from single crystal data as well as the experimental reagent pattern of [Hbet][NTf₂] (grey). Unidentified reflections in predominantly or completely unidentified patterns (BaO, Cu₂O, CuO, MnO) are not marked as such.

Fig. S5 Experimental diffractograms of the samples MoO₃, Nb₂O₅, NiO, ReO₃, Sb₂O₃, SnO, SrO, ThO₂, TiO₂, V₂O₃, V₂O₅, WO₃ and ZnO + [Hbet][NTf₂] (black) in the range $5^{\circ} \le 2\theta \le 90^{\circ}$ compared to the reflection patterns of the respective metal oxide if present simulated from single crystal data (green) as well as the experimental reagent pattern of [Hbet][NTf₂] (dark grey) and the pattern of [(Hbet)₃(bet)][NTf₂]₃ (light gray) simulated from single crystal data.¹ Unidentified reflections in completely unidentified patterns (SrO, V₂O₃, ZnO) are not marked as such.

Fig. S6 Experimental diffractograms of the samples $Bi_2O_3 + [Hbet][NTf_2]$ reacted in argon flow (top) and on air before washing with acetone (bottom) compared to the experimental pattern of the reagent Bi_2O_3 (green) and the $(BiO)_2CO_3$ pattern calculated from single crystal data (violet) in the range $5^\circ \le 2\theta \le 90^\circ$.

Lattice energies and *U*/*x* values

Table S2 Data for the calculation of the lattice energy *U* by the Born-Haber cycle and of the *U/x* value. Furthermore, the binding energy of $O_2 B = 498.34$ kJ/mol and the electron affinities of $O EA_1 = 141$ kJ/mol and $EA_2 = -844$ kJ/mol were used. ΔH_f values were obtained from *Thermochemical Data of Pure Substances*, $^2 \Delta H_s$, ΔH_m , ΔH_v and *B* from *Lange's Handbook of Chemistry*³ and I_i and EA_i values from the *NIST* online database.⁴

Oxide	x	ΔH_f	ΔH_s	ΔH_m	ΔH_{v}	$\mathbf{\nabla}_L$	U	U/x
		[kJ/mol]	[kJ/mol]	[kJ/mol]	[kJ/mol]	` [kJ/mol]]	[kJ/mol]	[kJ/mol]
Al_2O_3	2	-1676	326	_	_	2394	15464	7732
BaO	1	-554	_	7.12	140.3	1468	3121	3121
Bi_2O_3	2	-574	_	11.30	151	4781	13318	6659
CaO	1	-635	_	8.45	154.7	1735	3486	3486
$\mathrm{Co}_3\mathrm{O}_4$	3	-910	424	-	-	4025	18067	6022
Cr_2O_3	2	-1140	397	-	-	5231	15252	7626
Cu_2O	2	-171	337.7	_	-	745	3290	1645
CuO	1	-156	337.7	_	_	2703	4150	4150
Fe_2O_3	2	-824	415.5	_	-	5283	15078	7539
Ga_2O_3	2	-1089	_	5.59	254	5523	15511	7756
GeO_2	1	-580	-	36.94	334	9997	12852	12852
In_2O_3	2	-926	243.1	-	-	5085	14439	7220
MgO	1	-601	147	_	-	2188	3889	3889
MnO	1	-385	_	12.9	221	2226	3798	3798
MnO_2	1	-520	_	12.9	221	10416	13075	13075
MoO_3	1	-745	664	_	-	20643	24909	24909
Nb ₂ O	2	-1900	726	_	-	12958	34030	17015
5								
NiO	1	-240	_	17.48	377.5	2490	4077	4077
PbO	1	-218	195.2	_	_	2166	3532	3532
PbO_2	1	-274	195.2	_	_	9332	11706	11706
ReO ₃	1	-589	779	_	-	20207	24433	24433
Sb_2O_3	2	-720	—	19.87	193.43	4878	13760	6880
SnO	1	-286	-	7.03	296.1	2120	3662	3662
SrO	1	-592	164.0	_	_	1614	3322	3322
ThO_2	1	-1226	-	13.81	514	6308	9967	9967
TiO ₂	1	-945	469	-	-	8796	12114	12114
V_2O_3	2	-1219	516	_	-	4891	14890	7445
V_2O_5	2	-1551	516	_	_	15696	38738	19369
WO_3	1	-843	851	_	_	19761	24312	24312
ZnO	1	-350	_	7.32	123.6	2640	4074	4074

The compound [Cu₂(bet)₄(NTf₂)₂][NTf₂]₂

Fig. S7 Crystal structure of $[Cu_2(bet)_4(NTf_2)_2][NTf_2]_2$. Coordinative interactions are marked as dotted lines. The ellipsoids enclose 70 % of the probability density of the atoms at 100 K. H atoms are omitted for clarity.

Fig. S8 Experimental diffractogram of $[Cu_2(bet)_4(NTf_2)_2][NTf_2]_2$ after washing with acetone (black) compared to the pattern simulated from single crystal data of $[Cu_2(bet)_4(NTf_2)_2][NTf_2]_2$ (blue) in the range $5^\circ \le 2\theta \le 90^\circ$.

Assignment of IR bands of [Hbet][NTf₂]

Table S3 Positions and proposed assignment of the bands observed in the FTIR spectrum of [Hbet][NTf₂] in the range 500 cm⁻¹ $\leq \tilde{v} \leq 4000$ cm⁻¹. The symbols have their usual meaning: *v* stretching, δ bending, γ out of plane bending or wagging, s symmetric, as asymmetric. Assignment with the aid of references 5–8.

IR vibration of [Hbet][NTf ₂] [cm ⁻¹]	Proposed assignment		
3301	$v_{\rm as}$ OH		
3053	<i>v</i> _s CH (CH ₃)		
2999	v _{as} CH (CH ₃)		
2966	<i>v</i> CH (CH ₂)		
1770	$v_{\rm as}$ COO		
1496	$v_{\rm as}$ HCH (CH ₃)		
1479	$\delta_{ m as}{ m CH_3}$		
1424	$\delta_{\rm s}$ HCH (CH ₃ -N)		
1350	$v_{\rm as}~{ m SO}_2$		
1331	δ NCH		
1180	v CF ₃		
1142	$v_{\rm s} { m SO}_2$		
1050	$v_{\rm as}~{ m SN}$		
994	$v_{\rm as} {\rm C_3N}$		
955	$\delta \operatorname{CCN}$		
931	δ CNC		
883	v CC		
795	$v_{\rm s} { m SN}$		
766	v CS		
743	$\delta_{ m s}{ m CF_3}$		
676	v CN		
610	$\delta{ m CSN}$		
572	у СН		
518	у СН		

¹H NMR spectra

Fig S9 1H NMR spectra of [Hbet][NTf₂], the heated mixture of [Hbet][NTf₂] and [Hbet]Cl as well as several samples of metal oxide mixtures in the range 1 ppm $\leq \delta \leq 6$ ppm, where all signals occur. Highlighted in green are the signals of CH₃ (3.1 ppm) and CH₂ (4.1 ppm), orange shading indicates the

signal originating from the solvent DMSO-d₆. No signal is observed for the carboxyl proton of betainium, which is attributed to its low intensity und broadness due to fast exchange processes.⁹

Reaction mixtures in [Hbet][NTf2]-[Hbet]Cl

Table S4 Product appearance and phases identified by pXRD of the reaction mixtures of a metal oxide, [Hbet][NTf₂] and [Hbet]Cl. If not stated otherwise, a molar ratio of $n_{\rm M} : n_{\rm [Hbet][NTf_2]} : n_{\rm [Hbet]Cl} = 1 : 2 : 2$ and heating to 175 °C for 24 h was applied.

Oxide	Product appearance	PXRD phases	Varied reaction conditions	Product appearance
Al ₂ O ₃	White powder in brown liquid	No reflections		
BaO	White powder in brown paste	BaCl ₂ , unidentified reflections	$n_{\text{Ba}}: n_{[\text{Hbet}][\text{NTf2}]}:$ $n_{[\text{Hbet}]\text{Cl}} = 3: 18: 1$	Colourless liquid and white solid, identified as BaCl ₂ by pXRD after washing
Bi ₂ O ₃	White powder in brown liquid	BiOCl, unidentified reflections		
CaO	Paste of brown, orange and colourless crystals	Unidentified reflections	$n_{\text{Ca}}: n_{[\text{Hbet}][\text{NTf2}]}:$ $n_{[\text{Hbet}]\text{Cl}} = 3: 18: 1$	Clear, colourless solution
Co ₃ O ₄	Blue crystals in colourless liquid	Unidentified reflections		
Cr ₂ O ₃	Green powder in colourless liquid	Cr ₂ O ₃		
Cu ₂ O	White powder in yellow liquid	CuCl		
CuO	Brown solid in brown liquid	Many unidentified reflections	4 h	Green liquid, precipitation of blue, needle-shaped crystals overnight
Fe ₂ O ₃	Red powder in brown liquid	Fe ₂ O ₃ , unidentified reflections	$n_{\text{Fe}}: n_{[\text{Hbet}][\text{NTf2}]}:$ $n_{[\text{Hbet}]\text{Cl}} = 1:4:1$	Red powder in slighly yellow liquid
Ga ₂ O ₃	White powder in brown paste	Ga ₂ O ₃ , unidentified reflections	n_{Ga} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]\text{Cl}} = 1:6:1$	White powder in colourless liquid, only Ga ₂ O ₃ identified by pXRD
GeO ₂	White powder in brown liquid	GeO ₂		
In ₂ O ₃	Pale orange paste	In ₂ O ₃ , [(Hbet) ₃ (bet)][NTf ₂] ₃ unidentified reflections	n_{In} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]\text{Cl}} = 1 : 6 : 1$	Fine, yellow powder in colourless liquid, only In ₂ O ₃ identified by pXRD
MgO	Slightly brown solid	Many unidentified reflections	n_{Mg} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]\text{Cl}} = 3: 18: 1$	Clear, colourless solution
MnO	Light brown paste	Many unidentified reflections	n_{Mn} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]\text{Cl}} = 3: 18: 1$	Clear, light orange solution
MnO ₂	Colourless crystals in brown liquid	Unidentified reflections		
MoO ₃	Brown, hard resin-like substance	MoO ₃ , unidentified reflections		
Nb ₂ O ₅	white powder in brown liquid	Nb ₂ O ₅ , unidentified reflections	n_{Nb} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]Cl} = 1:6:1$	White powder in colourless liquid, Nb_2O_5 identified by

				pXRD
NiO	Green solid (washing with acetone yields green liquid and hygroscopic yellow powder transforming to green liquid on air)	NiO, unidentified reflections		
PbO	White powder in light brown liquid	Unidentified pattern	n_{Pb} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]\text{Cl}} = 1:4:1$	White powder in orange solution
PbO ₂	White powder in brown liquid	Unidentified pattern		
ReO ₃	Red crystals in brown liquid	ReO ₃		
Sb ₂ O ₃	white powder in brown liquid	[(Hbet) ₃ (bet)][NTf ₂] ₃ unidentified reflections		
SnO	Brown paste	No reflections		
SrO	Clear, brown liquid	-		
ThO ₂	White powder in brown solution	ThO ₂	n_{Th} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]\text{Cl}} = 1$: 12: 2	White powder and a few black particles in yellow liquid
TiO ₂	white powder in brown liquid	TiO ₂ , [(Hbet) ₃ (bet)][NTf ₂] ₃		
V ₂ O ₃	Fine, black powder in brown paste	V ₂ O ₃	n_{V} : $n_{[\text{Hbet}][\text{NTf2}]}$: $n_{[\text{Hbet}]\text{CI}} = 1:6:1$	Few black particles in grey liquid, no pXRD signals
V ₂ O ₅	Black powder in dark green paste	No reflections		
WO ₃	Yellow powder in brown liquid	WO ₃		
ZnO	Clear, brown liquid	-		

Fig. S10 Experimental diffractograms of the samples Al_2O_3 , BaO, Bi_2O_3 . CaO, Co_3O_4 , Cr_2O_3 , Cu_2O_3 , CuO, Fe₂O₃, Ga₂O₃, GeO₂ and In₂O₃ + [Hbet][NTf₂] + [Hbet]Cl (black) in the range 5° $\leq 2\theta \leq 90^{\circ}$ compared to the reflection patterns of the respective metal oxide (green) or metal chloride/oxide chloride (blue) if present simulated from single crystal data as well as the experimental reagent pattern of [Hbet][NTf₂] (dark grey) and the pattern of [(Hbet)₃(bet)][NTf₂]₃ simulated from single crystal data.¹ Unidentified reflections in completely unidentified patterns (CaO, Co₃O₄, CuO, MgO) are not marked as such.

Fig. S11 Experimental diffractograms of the samples MnO, MnO₂, MoO₃, Nb₂O₅, NiO, PbO, PbO₂, ReO₃, Sb₂O₃, SnO, ThO₂, TiO₂, V₂O₃, V₂O₅ and WO₃ + [Hbet][NTf₂] + [Hbet]Cl (black) in the range $5^{\circ} \le 2\theta \le 90^{\circ}$ compared to the reflection patterns of the respective metal oxide if present simulated from single crystal data (green) as well as the pattern of [(Hbet)₃(bet)][NTf₂]₃ simulated from single crystal data.¹ Unidentified reflections in predominantly or completely unidentified patterns (MnO, MnO₂, NiO, PbO, PbO₂) are not marked as such.

EDX of the sample ThO₂ + [Hbet][NTf₂] + [Hbet]Cl

Fig S12 SEM image of the white powder of the sample $\text{ThO}_2 + [\text{Hbet}][\text{NTf}_2] + [\text{Hbet}]Cl$ $(n_{\text{Th}} : n_{[\text{Hbet}][\text{NTf}_2]} : n_{[\text{Hbet}]Cl} = 1 : 12 : 2)$ with EDX measuring points indicated.

Table S5 Overview of the results of the EDX measurement. Besides C, O and Th, also La and Ta were detected. However, as their amounts were below the detection level, no assumption of the presence of small quantities of these elements can be made.

	EDX composition				
Element	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Average
С	52 %	50 %	56 %	50 %	52 %
Ο	35 %	39 %	36 %	36 %	36 %
Th	13 %	11 %	9 %	13 %	11 %

References

- 1 P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, K. Van Hecke, L. Van Meervelt, B. Kirchner and K. Binnemans, *J. Phys. Chem. B*, 2006, **110**, 20978–20992.
- 2 I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 3rd edn., 1995.
- 3 J. G. Speight, Lange's handbook of chemistry, McGraw-Hill, New York, 16th edn., 2005.
- 4 A. Kramida, Y. Ralchenko and J. Reader, *NIST Atomic Spectra Database 5.6.1*, National Institute of Standards and Technology, Gaithersburg, 2018.
- 5 M. Viertorinne, J. Valkonen, I. Pitkänen, M. Mathlouthi and J. Nurmi, J. Mol. Struct., 1999, 477, 23-29.
- 6 K. Hanke, M. Kaufmann, G. Schwaab, M. Havenith, C. T. Wolke, O. Gorlova, M. A. Johnson, B. P. Kar, W.
- Sander and E. Sanchez-Garcia, Phys. Chem. Chem. Phys., 2015, 17, 8518-8529.
- 7 M. M. Ilczyszyn and M. Ilczyszyn, J. Raman Spectrosc., 2003, 34, 693-704.
- 8 M. Szafran, A. Katrusiak, Z. Dega-Szafran and I. Kowalczyk, J. Mol. Struct., 2013, 1031, 49-55.

9 J. Dimitric-Markovic, U. Mioc, J. Baranac and Z. Nedic, *Journal of the Serbian Chemical Society*, 2001, **66**, 451–462.