Sorption of Carbendazim to Activated Carbons Derived from Rape Straw and its Mechanism

Tao Wang ^{a,b,}, Zhen Zhang ^{a,}, Huixue Zhang ^a, Xiaoxiao Zhong ^a, Yonghong Liu ^{a*},

Shuijiao Liao ^a, Xiali Yue ^a, Guangsheng Zhou ^c

^a College of Science, Huazhong Agricultural University, Wuhan, 430070, China

^b Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China

^c College of Plant Science and Technology, Huazhong Agricultural University,

Wuhan, 430070, China

* Corresponding author: Tele/Fax No: 0086 15827001139

E-mail: liuyh913@mail.hzau.edu.cn

Fig. S1. XRD profiles of the samples

Fig. S2. FTIR spectra of the samples

Fig. S3. Correlations between sorption coefficient (K_d) at different CBD concentrations and (a) nonlinearity, (b) polarity index (O+N)/C, (c) the relative contents of the O-containing functional groups determined by C1s XPS spectra, (d) the total O-containing functional groups by Boehm's titration. The correlations were analyzed by Pearson test(two-tailed) using SPSS 18.0.

Fig. S4. Pseudo-first-order kinetic model (a),Pseudo-second-order kinetic model (b) and Particle diffusion equation(c) for CBD onto the samples (temperature=20±0.5°C; initial pH=7.00±0.10; time=360±5min)

Fig. S5. Solution speciation of CBD as a function of pH

Samples	$S_{\rm BET}({\rm m^2/g})$	$S_{\rm mic}({\rm m^{2}/g})$	$S_{\rm ext}({\rm m^2/g})$	$V_{\rm tot}(\rm cm^3/g)$	$V_{\rm mic}(\rm cm^3/g)$	$V_{\rm ext}(\rm cm^3/g)$	$D_{\rm p}({\rm nm})$
AC300	951	275	676	0.47	0.14	0.33	3.70
AC400	1490	35	1455	1.40	0.02	1.38	4.75
AC500	1164	75	1089	1.17	0.04	1.13	4.58
AC600	1053	79	974	1.06	0.04	1.02	4.18
AC600-PGB	1122	89	1033	1.08	0.05	1.03	4.16
AC600-CGB	1120	90	1030	0.99	0.04	0.95	4.69

Table S1 Textural properties of the samples

Table S2 Etimated kinetic model constants for the sorption of CBD onto the samples

Model	Parameter	Adsorbent					
		AC200	AC400	AC500	AC600	AC600	AC600
		ACJUU	AC400			-PGB	-CGB
pseudo- first-order	Qe,exp(mg/g)	13.57	14.06	11.54	13.10	18.46	13.16
	<i>Qe</i> ,cal(mg/g)	73.33	82.33	85.12	96.64	110.14	121.64
	$K_l(1/\min)$	0.0110	0.0094	0.0094	0.0127	0.0169	0.0097
	R^2	0.9656	0.9409	0.9623	0.9890	0.9260	0.8734

	<i>Qe</i> ,exp(mg/g)	75.02	84.10	85.76	97.56	110.86	122.10
pseudo- second- order	Qe,cal(mg/g)	73.33	82.33	85.12	96.64	110.14	121.64
	<i>K</i> ₂ (g/(mgmin)10 ⁻³)	1.9616	2.0119	2.7397	2.8576	3.0749	2.6636
	<i>h</i> (mg/(g min))	11.04	14.23	20.15	27.19	37.79	39.71
	R^2	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	$K_{pl}(\text{mg/g min}^{1/2}10^{-3})$	1.9278	1.9617	1.2411	1.5397	3.5510	2.5550
intra- particle diffusion	C_I	52.83	61.24	69.68	79.20	77.98	91.19
	$(R_{1})^{2}$	0.9964	0.7706	0.9761	0.9803	0.9354	0.6889
	K_{p2} (mg/g min ^{1/2} 10 ⁻³)	0.5874	0.5739	0.5057	0.4966	0.2921	0.5344
	C_2	63.34	72.27	75.94	88.39	105.11	111.66
	$(R_2)^2$	0.9265	0.9743	0.9449	0.9739	0.8549	0.8969
	$K_{p3}(\text{mg/g min}^{1/2}10^{-3})$	0.0805	0.0487	0.0211	0.0387	0.0246	0.0091
	C_3	71.84	82.02	84.73	95.97	109.76	121.47
	$(R_3)^2$	0.9683	0.8277	0.9924	0.9030	0.6451	0.9849

Samples	temperature (K)	ΔG (kJ/mol)	<i>∆H</i> (kJ/mol)	<i>∆S</i> (kJ/mol)	
	293	-1.02			
AC300	303	-0.37	-15.60	-49.92	
	313	-0.01			
	293	-1.54			
AC400	303	-1.08	-16.48	-50.88	
	313	-0.52			
	293	-2.04			
AC500	303	-1.55	-17.01	-51.03	
	313	-1.01			
	293	-3.37			
AC600	303	-3.06	-11.59	-28.07	
	313	-2.80			
	293	-6.34			
AC600- PGB	303	-5.86	-20.44	-48.07	
	313	-5.37			
	293	-7.60			
AC600- CGB	303	-7.01	-20.36	-43.67	
	313	-6.71			

Table S3 Thermodynamic parameters of samples sorption on CBD

Samples	Q^0	а	Kp	R^2	$C_{\rm e}$ =10 mg/L		$C_{\rm e}$ =300 mg/L	
					$Q_{ m ad}$	Q_{p}	$Q_{ m ad}$	$Q_{ m p}$
AC300	87.0 ± 11	0.023	0.016	0.993	16.3	0.16	83.4	4.8
AC400	112.3 ± 37	0.018	0.019	0.980	17.1	0.19	106.4	5.7
AC500	106.2±18	0.026	0.023	0.988	21.9	0.23	102.3	6.9
AC600	106.8±12	0.057	0.072	0.985	38.8	0.72	105.0	21.6
AC600-PGB	99.6±12	0.242	0.215	0.958	70.5	2.15	99.2	64.5
AC600-CGB	103.8±9	0.739	0.273	0.962	91.4	2.73	103.7	81.9

Table S4 Dual-mode model fitting results of CBD sorption on the samples

Text S1 Thermodynamic adsorption analysis

The standard free energy change (ΔG^{0}) can be calculated from the following equation (S1):

$$\Delta G^0 = -RT ln K^0 \tag{S1}$$

where R is the universal gas constant (8.314 J mol⁻¹K⁻¹), T is the temperature in Kelvin. The sorption equilibrium constant, K⁰, can be calculated by plotting lnK_d versus C_e and extrapolating C_e to zero. The standard enthalpy change (ΔH^0) and the standard entropy change (ΔS^0) are calculated from the following equation (S2):

$$lnK^{0} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$
(S2)

The thermodynamic parameters are calculated from the plot of $\ln K^0$ vs 1/T using equations (S1) and (S2).