Supporting Information

Lanthanide Chains containing Naphthalenyl Nitronyl Nitroxide Radical

Charlie V. Sarmiento^a, Thamyres A. Araujo^b, Samira G. Reis^b, Mateus S. de Souza,^b Rafael A. Allão Cassaro,^{c*} Miguel A. Novak,^a Maria G.F. Vaz^{b*}

^a Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

^b Instituto de Química, Universidade Federal de Fluminense, Niterói, RJ, Brasil

^c Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Table of contents

 Table S1:Summary of data collection and refinement for 1-4.
 page S3

 Fig. S1:Powder X-ray diffraction pattern for 1 (blue), 2 (red) and 3 (black) and simulated one from the crystal of (green) structure 2.....page S4 Fig. S2:Powder X-ray diffraction pattern for 4 (red) and simulated one (green) from the crystal structure of 4.....page S5 Fig. S3: ORTEP view of the asymmetric unit of 1-3 at 30% of probability. Color code: black, blue, red, green and cyan stands for carbon, nitrogen, oxygen, fluorine atoms and lanthanide (III) ions, respectively. Hydrogen atoms were omitted for clarity......page S6 Fig. S4. View of the crystal packing of 1-3 along the crystallographic b axis emphasizing the arrangement of the two crystallographically non-equivalent chains containing Ln1(green) and Ln2(pink)......page S7 **Table S2**: CSM calculations of the coordination environment of LnO8 in 1-4.....page S8

 Table S3: Selected bond lengths (Å) and bond angles (°) for 1-3.....page S9

 Fig. S5: ORTEP view of the asymmetric unit of 4 at 30% of probability. Color code: black, blue, red, green and cyan stands for carbon, nitrogen, oxygen, fluorine atoms and yttrium (III) ion, respectively. Hydrogen atoms and oxygen atoms from water molecules were omitted for clarity.

Fig. S6: View of the crystal packing of 4 along the crystallographic b axis. Hydrogen atoms, methyl
and CF ₃ groups were omitted for claritypage S12
Fig. S7: Field dependence of magnetization for 1 at different temperatures. The error bar is shown
in the Figure. Solid lines represent the best fit using parameters described in the main
textpage S13
Fig. S8: Field dependence of magnetization for 2 (top) and 3 (bottom) at different
temperaturespage S14
Fig. S9: Field dependence of magnetization for 4 at different temperatures. Solid lines represent the
best fits using parameters described in the main
textpage S15
Fig. S10: Temperature dependence of real (χ') and imaginary (χ'') magnetic susceptibilities at
different frequencies for 2 with solid lines as guide for
eyespage S16
Fig. S11: Plot of τ as a function of the reciprocal temperature for 2, where black line represents a fit
using Arrhenius lawpage S17
Fig. S12: The Argand plot for compound 2, where the lines represent the best fit using a generalized
Debye modelpage S18
Table S4 . Cole-Cole parameters obtained and used to reproduce the Argand plots page S18
Fig. S13: Plot of $ln(\chi T)$ versus 1/T for 2 at 200 Oe dc field. Solid line corresponds to a linear fit
according to an expression described in the main textpage S19
Fig. S14: Plot of $ln(\chi T)$ versus 1/T for 3 at 200 Oe dc field. Solid line corresponds to a linear fit
according to an expression described in the main textpage S20
Fig. S15: Temperature dependence of χ' and χ'' at different frequencies at zero applied dc field
for 3 . Solid lines are guide for eyespage S21
References

Identification	(1)	(2)	(3)	(4)
Formula	$C_{32}H_{22}F_{18}GdN_2O_8\\$	$C_{32}H_{22}F_{18}DyN_{2}O_{8} \\$	$C_{32}H_{22}F_{18}TbN_2O_8$	$C_{49}H_{41}F_{18}N_4O_{14}Y \\$
Fw (g mol ⁻¹)	1061.76	1067.01	1063.43	1340.77
T (K)	150(2)	150(2)	294(2)	292(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/n$	P-1
a (Å)	22.2869(17)	22.2970(9)	22.5914(10)	12.7544(8)
b (Å)	16.8565(15)	16.8233(6)	17.0984(6)	14.3568(10)
c (Å)	22.8736(19)	22.8137(8)	22.9681(10)	19.1732(12)
α (Deg,)	90	90	90	73.103(3)
β (Deg,)	114.560(4)	114.398(2)	114.802(2)	88.416(3)
γ(Deg,)	90	90	90	68.899(3)
Volume (Å ³)	7815.7(11)	7793.4(5)	8053.7(6)	3122.4(4)
Z	8	8	8	2
ρ_{calc} (Mg m ⁻³)	1.805	1.819	1.754	1.426
μ (mm ⁻¹)	1.833	2.054	1.888	1.047
<i>F</i> (000)	4144	4160	4152	1352
θ range (Deg.)	2.009-25.462	2.060-26.452	2.043-25.349	2.203-23.256
Index ranges	$\text{-}26 \leq h \leq \!\!26$	$-27 \le h \le 27$	$-27 \leq h \leq 27$	$\text{-}14 \leq h \leq \!\!\!14$
	$-17 \le k \le 20$	$-21 \le k \le 21$	$-20 \leq k \leq 20$	$-15 \le k \le 15$
	$-27 \le l \le 26$	$-26 \le l \le 28$	$-27 \le l \le 27$	$-21 \le l \le 21$
Data collected	99215	151546	453485	47995
Independent reflections	14399	15994	14753	8647
R _{int}	0.0681	0.0759	0.1202	0.0772
Data/restraints/parameters	14399 /144 /1119	15994/144/1101	14753 / 48 / 1126	8647 / 72 / 802
GOF on F^2	1.064	1.094	1.207	1.006
R1,wR2 [I>2σ(I)]	0.0731, 0.1559	0.0477, 0.0996	0. 0595, 0.1235	0.1023, 0.2283
R1,wR2 (all)	0.1002, 0.1729	0.0776, 0.11196	0.0871, 0.1410	0.1288, 0.2459
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \cdot \text{\AA}^{-3})$	4.209, -3.973	2.369, -1.544	2.544, -1.505	0.951, -0.753

 Table S1: Summary of data collection and refinement for 1-4

Fig. S1. Powder X-ray diffraction pattern for **1** (blue), **2** (red) and **3** (black) and simulated one (green) from the crystal structure of **2**.

Fig. S2: Powder X-ray diffraction pattern for 4 (red) and simulated one (green) from the crystal structure of 4.

Fig. S3. : ORTEP view of the asymmetric unit of **1-3** at 30% of probability. Color code: black, blue, red, green and cyan stands for carbon, nitrogen, oxygen, fluorine atoms and lanthanide (III) ions, respectively. Hydrogen atoms were omitted for clarity.

Fig. S4. View of the crystal packing of **1-3** along the crystallographic b axis emphasizing the arrangement of the two crystallographically non-equivalent chains containing Ln1 (green) and Ln2 (pink).

Ln ion	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
Gd1	29.667	23.490	14.401	7.951	1.850	0.443	14.546	27.648	2.681	2.091	3.217	8.779	23.028
Gd2	30.524	22.967	13.062	7.957	2.690	0.612	13.363	27.372	3.037	2.186	3.583	8.693	22.839
Dy1	29.690	23.762	14.616	7.896	1.801	0.366	14.743	28.158	2.665	2.056	3.157	8.725	23.393
Dy2	30.773	23.228	13.251	7.856	2.705	0.500	13.741	27.961	2.999	2.168	3.479	8.599	23.141
Tb1	30.248	23.410	14.710	8.130	2.193	0.279	14.220	28.555	2.712	2.101	2.969	8.967	23.577
Tb2	30.974	23.284	13.617	8.154	2.750	0.450	14.042	28.143	2.970	2.147	3.367	8.893	23.680
Y1	30.387	24.433	15.032	8.042	1.873	0.192	14.674	28.891	2.480	2.035	2.665	8.827	24.479

Table S2: CSM Calculations of the coordination environment of LnO8 in 1-4

OP-8 Octagon; HPY-8 Heptagonal pyramid; HBPY-8 Hexagonal bipyramid; CU-8 Cube; SAPR-8 Square antiprism; TDD-8 Triangular dodecahedron; JGBF-8 Johnson gyrobifastigium J26; JETBPY-8 Johnson elongated triangular bipyramid J14, JBTPR-8 Biaugmented trigonal prism J50; BTPR-8 Biaugmented trigonal prism; JSD-8 Snub diphenoid J84; TT-8 Triakis tetrahedron; ETBPY-8 Elongated trigonal bipyramid.

Table S3: Selected bond	lengths (\dot{A}) and bond	angles $(^{\circ})$ for 1.3
Table 55: Selected bolid	lenguis (A) and bond	angles () for 1-3.

Bond lengths						
1		2		3		
Gd1-O1	2.379(6)	Dy1-O1	2.355(4)	Tb1–O1	2.365(5)	
Gd1–O2	2.372(6)	Dy1-O2	2.333(4)	Tb1–O2	2.353(5)	
Gd1–O3	2.336(6)	Dy1-O3	2.316(4)	Tb1–O3	2.319(5)	
Gd1–O4	2.389(7)	Dy1-O4	2.371(4)	Tb1—O4	2.380(6)	
Gd1–O5	2.413(6)	Dy1-O5	2.387(4)	Tb1–O5	2.404(6)	
Gd1-06	2.361(7)	Dy1-O6	2.328(4)	Tb1—O6	2.332(5)	
Gd1–O7	2.371(7)	Dy1-O7	2.345(4)	Tb1–O7	2.353(6)	
Gd1–O8	2.395(7)	Dy1–O8 ^a	2.378(4)	Tb108	2.397(6)	
Gd209	2.351(7)	Dy209	2.334(4)	Tb209	2.344(6)	
Gd2010	2.367(7)	Dy2-010	2.341(4)	Tb2010	2.351(6)	
Gd2011	2.362(7)	Dy2-011	2.351(4)	Tb2011	2.355(5)	
Gd2012	2.368(7)	Dy2-012	2.345(4)	Tb2012	2.350(5)	
Gd2013	2.366(7)	Dy2-013	2.340(4)	Tb2013	2.351(6)	
Gd2014	2.387(7)	Dy2014	2.366(4)	Tb2014	2.375(6)	
Gd2015	2.368(6)	Dy2015	2.359(4)	Tb2015	2.369(5)	
Gd2016	2.381(7)	Dy2016	2.365(4)	Tb2016	2.376(5)	
		Bond a	ngles		•	
O1Gd1O2	72.8(2)	O1-Dy1-O2	73.44(14)	O1-Tb1-O2	72.83(19)	
O1Gd1O3	70.6(2)	O1-Dy1-O3	70.43(14)	O1-Tb1-O3	71.47(19)	
O4-Gd1-O1	125.4(2)	O4-Dy1-O1	125.26(15)	O4-Tb1-O1	127.3(2)	
01–Gd1–O5	127.4(2)	01–Dy1–O5	127.95(14)	O1-Tb1-O5	127.52(19)	
O1-Gd1-O6	152.1(2)	01–Dy1–O6	151.84(14)	O1-Tb1-O6	150.82(19)	
O1-Gd1-O7	70.6(3)	01–Dy1–07	71.47(15)	O1–Tb1–O7	71.6(2)	
O1Gd1O8	80.3(3)	O1–Dy1–O8 ^a	78.94(15)	O1–Tb1–O8 ^a	79.2(2)	
O3-Gd1-O2	143.4(2)	O3-Dy1-O2	143.82(14)	O3-Tb1-O2	144.3(2)	
O4-Gd1-O2	134.2(2)	O4-Dy1-O2	133.40(14)	O4-Tb1-O2	133.0(2)	
O5-Gd1-O2	129.5(2)	O5-Dy1-O2	129.76(15)	O5-Tb1-O2	130.4(2)	
O6-Gd1-O2	79.3(2)	O6-Dy1-O2	78.41(15)	O6-Tb1-O2	78.1(2)	
O7–Gd1–O2	74.9(2)	O7-Dy1-O2	75.45(15)	O7–Tb1–O2	75.7(2)	
O8-Gd1-O2	68.7(2)	O8 ^a –Dy1–O2	69.02(15)	O8ª-Tb1-O2	69.2(2)	
O4-Gd1-O3	71.7(2)	O4-Dy1-O3	72.47(15)	O4-Tb1-O3	72.00(19)	
O5-Gd1-O3	74.9(2)	O5-Dy1-O3	74.38(15)	O5–Tb1–O3	74.4(2)	
O6-Gd1-O3	137.3(2)	O6-Dy1-O3	137.73(15)	O6-Tb1-O3	137.6(2)	
O3-Gd1-O7	91.8(2)	O3-Dy1-O7	91.30(15)	O3—Tb1—O7	93.2(2)	
O8-Gd1-O3	105.8(3)	O8ª-Dy1-O3	105.20(16)	O8ª-Tb1-O3	103.9(2)	
O4-Gd1-O5	76.5(3)	O4-Dy1-O5	76.07(15)	O4—Tb1—O5	75.2(2)	
O4-Gd1-O6	75.5(2)	O4-Dy1-O6	74.99(14)	O4-Tb1-O6	75.6(2)	
O4-Gd1-O7	147.5(2)	O4-Dy1-O7	147.36(15)	O4—Tb1—O7	146.5(2)	
O4-Gd1-O8	73.7(3)	O4–Dy1–O8 ^a	73.64(15)	O4–Tb1–O8 ^a	73.6(2)	
O6-Gd1-O5	71.5(2)	O6-Dy1-O5	72.16(14)	O6-Tb1-O5	71.4(2)	
O5-Gd1-O7	72.2(3)	O5-Dy1-O7	72.29(15)	O5-Tb1-O7	71.8(2)	
O8-Gd1-O5	148.1(3)	O8 ^a –Dy1–O5	148.14(16)	O8ª-Tb1-O5	147.5(2)	
O6-Gd1-O7	102.0(2)	O6-Dy1-O7	102.26(15)	O6-Tb1-O7	99.2(2)	
O6-Gd1-O8	90.0(3)	O6–Dy1–O8 ^a	90.50(15)	O6-Tb1-O8 ^a	92.1(2)	
O8-Gd1-O7	138.7(3)	O8ª—Dy1—O7	138.85(16)	O8ª—Tb1—O7	139.9(2)	
O10-Gd2-O9	72.9(3)	O10–Dy2–O9	73.48(15)	O10-Tb2-O9	73.3(3)	
011–Gd2–O9	130.9(2)	011–Dy2–O9	130.61(15)	011–Tb2–O9	131.5(2)	
09–Gd2–O12	80.8(3)	09–Dy2–O12	79.47(15)	09–Tb2–O12	79.3(2)	
O9–Gd2–O13	143.1(3)	09–Dy2–O13	143.76(16)	O9-Tb2-O13	143.4	

O14-Gd2-O9	134.2(2)	O14-Dy2-O9	133.45(2)	O14-Tb2-O9	133.7(2)
O9-Gd2-O15	68.1(2)	O9–Dy2–O15	68.32(14)	O9-Tb2-O15	69.0(2)
O9-Gd2-O16	72.2(2)	O9-Dy2-O16	72.00(14)	O9-Tb2-O16	72.9
O10-Gd2-O11	122.7(2)	O10-Dy2-O11	123.28(14)	O10-Tb2-O11	123.8(2)
O10-Gd2-O12	153.5(2)	O10-Dy2-O12	152.75(15)	O10-Tb2-O12	152.2(2)
O10-Gd2-O13	70.2(2)	O10-Dy2-O13	70.28(15)	O10-Tb2-O13	70.1(2)
O10-Gd2-O14	126.9(2)	O10-Dy2-O14	127.41(13)	O10-Tb2-O14	127.3(2)
O10-Gd2-O15	84.8(3)	O10-Dy2-O15	83.66(15)	O10-Tb2-O15	83.8(2)
O10-Gd2-O16	72.5(2)	O10-Dy2-O16	73.02(15)	O10-Tb2-O16	72.9(2)
O11–Gd2–O12	72.9(2)	O11–Dy2–O12	73.10(14)	O11-Tb2-O12	73.62(19)
O11-Gd2-O13	72.8(2)	O11-Dy2-O13	72.89(14)	O11-Tb2-O13	73.1(2)
O14-Gd2-O11	77.3(2)	O14-Dy2-O11	76.95(14)	O14-Tb2-O11	76.0(2)
O11–Gd2–O15	148.4(2)	O11–Dy2–O15	148.61(15)	O11-Tb2-O15	147.3(2)
O11–Gd2–O16	70.6(2)	O11–Dy2–O16	70.88(15)	O11-Tb2-O16	71.2(2)
O13-Gd2-O12	136.0(2)	O13-Dy2-O12	136.73(15)	O13-Tb2-O12	137.3(2)
O14-Gd2-O12	74.9(2)	O14-Dy2-O12	74.76(14)	O14-Tb2-O12	75.8(2)
O15-Gd2-O12	88.7(2)	O15-Dy2-O12	89.47(14)	O15-Tb2-O12	90.5(2)
O16-Gd2-O12	96.4(2)	O16-Dy2-O12	95.73(14)	O16-Tb2-O12	95.2(2)
O14-Gd2-O13	71.4(2)	O14-Dy2-O13	72.15(14)	O14-Tb2-O13	71.8(2)
O13-Gd2-O15	107.2(3)	O13-Dy2-O15	106.58(15)	O13-Tb2-O15	105.4(2)
O13-Gd2-O16	97.3(3)	O13-Dy2-O16	97.62(15)	O13-Tb2-O16	97.2(2)
014-Gd2-015	73.1(3)	014–Dy2–015	73.30(14)	014-Tb2-015	72.7(2)
014–Gd2–O16	147.8(2)	O14–Dy2–O16	147.83(15)	O14-Tb2-O16	147.2(2)
015–Gd2–016	138.5(2)	O15-Dy2-O16	138.25(15)	O15-Tb2-O16	139.7(2)

a = symmetry operation -x+1/2, y+1/2, -z+3/2

Fig. S5. : ORTEP view of the asymmetric unit of **4** at 30% of probability. Color code: black, blue, red, green and cyan stands for carbon, nitrogen, oxygen, fluorine atoms and yttrium (III) ion, respectively. Hydrogen atoms and oxygen atoms from water molecules were omitted for clarity.

Fig. S6: View of the crystal packing of **4** along the crystallographic *b* axis. Hydrogen atoms, methyl and CF_3 groups were omitted for clarity.

Fig. S7. : Field dependence of magnetization for **1** at different temperatures. The error bar is shown in the Figure. Solid lines represent the best fit using parameters described in the main text.

Fig. S8. : Field dependence of magnetization for 2 (top) and 3 (bottom) at different temperatures.

Fig. S9. : Field dependence of magnetization for **4** at different temperatures. Solid lines represent the best fits using parameters described in the main text.

Fig. S10: Temperature dependence of real (χ') and imaginary (χ'') magnetic susceptibilities at different frequencies for **2** with solid lines as guide for eyes.

Fig. S11: Plot of τ as a function of the reciprocal temperature for 2, where black line represents a fit using Arrhenius law.

Fig. S12. The Argand plot for compound **2**, where the lines represent the best fit using a generalized Debye model.¹

Table S4. Cole-Cole	parameters obtained	and used to re	produce the	Argand p	olots.
---------------------	---------------------	----------------	-------------	----------	--------

Temperature (K)	χ _s (emu/K Oe)	χ _T (emu/K Oe)	α	τ (s)
1.9	5×10 ⁻¹⁰	27.00	0.80	2.1×10 ⁻³
2.0	2×10 ⁻⁶	23.98	0.79	5.6×10 ⁻⁴
2.1	3×10 ⁻¹⁴	20.91	0.77	1.6×10 ⁻⁴
2.2	1×10 ⁻³	18.46	0.75	5.6×10 ⁻⁵
2.3	0.9	16.03	0.72	2.8×10 ⁻⁵

Fig. S13. : Plot of $\ln(\chi T)$ versus 1/T for **2** at 200 Oe dc field. Solid line corresponds to a linear fit according to an expression described in the main text.

Fig. S14. : Plot of $ln(\chi T)$ versus 1/T for **3** at 200 Oe dc field. Solid line corresponds to a linear fit according to an expression described in the main text.

Fig. S15: Temperature dependence of χ' and χ'' at different frequencies at zero applied dc field for **3**. Solid lines are guide for eyes.

References

¹ K. S. Cole and R. H. Cole, *J. Chem. Phys.* 1941, **9**, 341-351.