Supporting Information

Two-dimensional Cd(II) coordination polymer encapsulated by Tb³⁺ as a reversible luminescent probe for Fe³⁺

Yuandi Wu,^a Meihua Lin,^a Dongyang Liu,^a Ming Liu,^a Jing Qian,^{a*,b,c}

Corresponding authors: a* <u>qianjinger@aliyun.com</u> (J. Qian)

a College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China

b *Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China*

c Key Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Ministry of Education, Tianjin 300387, P. R. China

Fig. S1 FTIR patterns for Cd-P.

polymer	Cd-P
CCDC	1881136
Formula	$Cd_{0.50}C_{12}H_8N_3O$
fw	266.41
temp (K)	296(2)
cryst syst	Tetragonal
Space group	P-4 ₃ 2 ₁ 2
a (Å)	10.7413(3)
<i>b</i> (Å)	10.7413(3)
<i>c</i> (Å)	20.7748(13)
$\alpha = \beta = \gamma (°)$	90
$V(\mathbf{A}^3)$	2396.9(2)
Ζ	8
ho (Mg/m ³)	1.477
Abs coeff (mm ⁻¹)	0.943
F (000)	1064
GOF	1.069
$R_1/\mathrm{w}R_2 \left[\mathrm{I} > 2\sigma(\mathrm{I})\right]$	0.0240/0.0620
R_1/wR_2 (all data)	0.0244/0.0623

Table S1 Crystal data and structure refinement information for Cd-P.

Bond lengths (Å)			
Cd(1)-N(1)#1	2.269(3)	Cd(1)-N(1)	2.269(3)
Cd(1)-N(2)#2	2.280(3)	Cd(1)-N(2)#3	2.280(3)
Cd(1)-O(1)#1	2.501(3)	Cd(1)-O(1)	2.501(3)
N(2)-Cd(1)#4	2.280(3)		
Bond angles (°)			
N(1)#1-Cd(1)-N(1)	101.05(18)	N(1)#1-Cd(1)-N(2)#2	141.02(11)
N(1)-Cd(1)-N(2)#2	95.08(14)	N(1)#1-Cd(1)-N(2)#3	95.08(14)
N(1)-Cd(1)-N(2)#3	141.02(11)	N(2)#2-Cd(1)-N(2)#3	94.16(19)
N(1)#1-Cd(1)-O(1)#1	55.88(10)	N(1)-Cd(1)-O(1)#1	127.90(11)
N(2)#2-Cd(1)-O(1)#1	86.29(10)	N(2)#3-Cd(1)-O(1)#1	90.43(11))
N(1)#1-Cd(1)-O(1)	127.90(11)	N(1)-Cd(1)-O(1)	55.88(10)
N(2)#2-Cd(1)-O(1)	90.43(11)	N(2)#3-Cd(1)-O(1)	86.29(10)
O(1)#1-Cd(1)-O(1)	175.18(14)		

Table S2 Selected bond lengths (A°) and angles (°) for Cd-P.

Fig. S2 Thermogravimetric curve of Cd-P.

Fig. S3 PXRD patterns for Cd-P: (a) simulated; (b) experimental; (c) 3 days after immersion in water; (d) 3 days after immersion in FeCl₃ solution (e) 3 days after immersion in CoCl₂ solution; (f) 3 days after immersion in NiCl₂ solution; (g) 3 days after immersion in CuCl₂ solution; (h) 3 days after immersion in CH₃OH; (i) 3 days after immersion in acetone; (k) 3 days after immersion in CH₂Cl₂; (l) 3 days after immersion in DMF.

Fig. S4 PXRD patterns for Cd-P at different temperatures, 120° C (red line); 160° C (green line); 180° C (blue line) and the simulated one calculated from the single crystal structure analysis (black line).

Fig. S5 PXRD patterns for Tb³⁺@Cd-P: (a) simulated of Cd-P; (b) experimental of Cd-P; (c) experimental of Tb³⁺@Cd-P; (d) experimental of Tb³⁺@Cd-P first 12 h after immersion in FeCl₃ solution; (e) experimental of Tb³⁺@Cd-P second 12 h after immersion in FeCl₃ solution; (f) experimental of Tb³⁺@Cd-P third 12 h after immersion in FeCl₃ solution; (g) experimental of Tb³⁺@Cd-P fourth 12 h after immersion in FeCl₃ solution; (h) experimental of Tb³⁺@Cd-P fifth 12 h after immersion in FeCl₃ solution.

Fig. S6 SEM images and Elemental analysis by EDS of Tb³⁺@Cd-P.

Fig. S7 XPS survey spectra of the Cd-P and Tb³⁺@Cd-P samples.

Fig. S8 liquid-state luminescent spectra of modbc ligand (blue), Cd-P (green and yellow), Tb³⁺@Cd-P (orange and purple) in 5 mM Tris-HCl/NaCl buffer (pH 7.0). slit width: 4 nm.

Fig. S9 (a) Liquid-state luminescent spectra of Cd-P with different pH values (0.5~14.0) in 5 mM Tris-HCl/NaCl buffer (pH 7.0). λ_{ex} : 318 nm, λ_F : 400 nm, slit width: 4 nm. (b) Tb³⁺@Cd-P with different pH values (0.5~14.0) in 5 mM Tris-HCl/NaCl buffer (pH 7.0). λ_{ex} : 328 nm, λ_F : 390 nm, slit width: 4 nm.

Fig. S10 Luminescence quenching of Cd-P in 5 mM Tris-HCl/NaCl buffer (pH 7.0) with gradual addition of 1 mM solution of Co^{2+} , Ni^{2+} , Fe^{3+} , Hg^{2+} , Fe^{2+} and Cu^{2+} ions, respectively. λ_{ex} : 318 nm, λ_F : 400 nm, slit width: 4 nm.

Fig. S11 (a–f) The relative fluorescence intensity of a 10⁻⁵ M solution of Cd-P upon addition of 1.0 and 7.0 equiv of Co²⁺ ions, Cu²⁺ ions, Fe³⁺ ions, Ni²⁺ ions, Fe²⁺ ions and Hg²⁺ ions in the presence of 7.0 equiv of background ions (Mⁿ⁺) in 5 mM Tris-HCl/NaCl buffer (pH 7.0) with pH 7.0. λ_{ex} : 318 nm, λ_F : 400 nm, slit width: 4 nm.

Fig. S12 Luminescence quenching of Tb³⁺@Cd-P in 5 mM Tris-HCl/NaCl buffer (pH 7.0) with gradual addition of 1 mM solution of Fe³⁺ ions. λ_{ex} : 328 nm, λ_F : 390 nm, slit width: 4 nm.

Fig. S13 Luminescence enhancement of Tb³⁺@Cd-P in 5 mM Tris-HCl/NaCl buffer (pH 7.0) with gradual addition of 1 mM solution of Fe²⁺ ions. λ_{ex} : 328 nm, λ_F : 390 nm, slit width: 4 nm.

Fig. S14 liquid-state luminescent spectrum of $(NH_4)_2Fe(SO_4)_2$ in H_2O .

Fig. S15 Comparison of the luminescence intensity of Tb³⁺@Cd-P in 5 mM Tris-HCl/NaCl buffer (pH 7.0): after addition of mixed ions (Na⁺, Ag⁺, Cd²⁺, Zn²⁺, Pb²⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Sn²⁺, Mg²⁺, Hg²⁺, Hg²⁺, Fe²⁺, Mn²⁺; total concentration of mixed metal ions is 70 μ M), and followed by addition of Fe³⁺ ions ([Fe³⁺] = 5 or 70 μ M). λ_{ex} : 328 nm, λ_{F} : 390 nm, slit width: 4 nm.

Fig. S16 The variation of luminescent intensity of Cd-P at 400 nm with immersion time in 5 μ M Fe(NO₃)₃ aqueous solution (blue); Tb³⁺@Cd-P at 390 nm with immersion time in 50 μ M Fe(NO₃)₃ aqueous solution (olive).

Fig. S17 I_0/I of Tb³⁺@Cd-P versus Fe³⁺ ions concentration. λ_{ex} : 328 nm, λ_F : 390 nm, slit width: 4 nm.

Table 55. Comparison of the proces with inclutive reports for sensing re							
S. No	Probe	LOD (M)	Ref				
1	Mg-CP probe	$4.7 imes 10^{-4}$	S1				
2	Zn-L-MOF probe	6.4×10^{-6}	S2				
3	Zn(II)-based MOF probe	2×10^{-6}	S3				
4	Ln(III)-MOF probe	10-6	S4				
5	Europium-Based MOF probe	0.793× 10 ⁻⁶	85				
6	${[Eu(Hdcppa)(H_2O)_2] \cdot H_2O}n \text{ probe}$	10-6	S6				
7	Tb ³⁺ @Cd-P probe	6.6 × 10 ⁻⁷	This work				
8	Cd-P probe	4.7×10^{-8}	This work				

Table S3. Comparison of the probes with literature reports for sensing Fe³⁺

S1. Wu, Z. F.; Gong, L. K.; Huang, X. Y. A Mg-CP with in Situ Encapsulated Photochromic Guest as Sensitive Fluorescence Sensor for Fe³⁺/Cr³⁺ Ions and Nitro-Explosives. *Inorg. Chem.* **2017**, *56*, 7397–7403.

S2. Yu, C. Y.; Sun, X. D.; Zou, L. F.; Li, G. H.; Zhang, L. R.; Liu, Y. L. A Pillar-Layered Zn-LMOF with Uncoordinated Carboxylic Acid Sites: High Performance for Luminescence Sensing Fe³⁺ and TNP. *Inorg. Chem.*2019, 58, 4026–4032.

S3. Lv, R.; Li, H.; Su, J.; Fu, X.; Yang, B. Y.; Gu, W.; Liu, X. Zinc Metal–Organic Framework for Selective Detection and Differentiation of Fe(III) and Cr(VI) Ions in Aqueous Solution. *Inorg. Chem.* 2017, *56*, 12348–12356.

S4. Zhang, Q. S.; Wang, J.; Alexander, M. K.; Dou, W.; Xu, C.; Xu, C. L.; Yang, L. Z.; Fang, R.; Liu, W. S. Multifunctional Ln–MOF Luminescent Probe for Efficient Sensing of Fe³⁺,Ce³⁺, Acetone. *ACS Appl. Mater. Interfaces.***2018**, *10*, 23976–23986.

S5. Purna, C. R.; Mandal, S. Europium-Based Metal–Organic Framework as a Dual Luminescence Sensor for the Selective Detection of the Phosphate Anion and Fe³⁺ Ion in Aqueous Media. *Inorg. Chem.* **2018**, *57*, 11855–11858

S6. Zhang, H. J.; Fan, R. Q.; Chen, W.; Fan, J. Z.; Dong, Y. W.; Song, Y.; Du, X.; Wang, P.; Yang, Y. L. 3D Lanthanide Metal–Organic Frameworks Based on Mono-, Tri-, and Heterometallic Tetranuclear Clusters as Highly Selective and Sensitive Luminescent Sensor for Fe³⁺ and Cu²⁺ Ions. *Cryst. Growth Des.* **2016**, *16*, 5429–5440.

Fig. S18 Five regeneration cycles for detection of Fe³⁺ ions by Tb³⁺@Cd-P. λ_{ex}: 328 nm, λ_F: 390 nm, slit width: 4

nm.

Fig. S19 XPS spectra of Cd-P, and after added Cu²⁺, Co²⁺, Ni²⁺, Fe³⁺ samples: (a) the survey spectrum, and (b) the high resolution XPS spectra of O 1s.

Table S4 The detailed ICP studies of Cd-P and Tb³⁺@Cd-P.

Sample	Tb ³⁺ (ppm)	Hg ²⁺ (ppm)	Sm ³⁺ (ppm)	Fe ³⁺ (ppm)	Cr ³⁺ (ppm)	Eu ³⁺ (ppm)	Cu ²⁺ (ppm)	Co ³⁺ (ppm)
Tb ³⁺ @Cd-P	Below detection limit							
Cd-P+Cu ²⁺							0.0656	
Cd-P+Fe ³⁺				0.3564				
Cd-P+Hg ²⁺		0.0077						
Cd-P+Co ³⁺								0.0933
Cd-P+Sm ³⁺			Below detection limit					
Cd-P+Eu ³⁺						Below detection limit		
Cd-P+Cr ³⁺					0.1696			
$Tb^{3+} \textcircled{O}{Cd-P+Fe^{3+}}$	Below detection limit			0.0489				
detection limit / ppm	0.03		0.05			0.01		

Fig. S20 UV spectra of Cu²⁺, Fe³⁺, Fe²⁺, Co²⁺, Ni²⁺, Cd-P and Tb³⁺@Cd-P in DMF-DMSO (3:1).

Fig. S21 The high resolution XPS spectra for Cd-P, Tb^{3+} @Cd-P and Tb^{3+} @Cd-P+Fe³⁺ samples of Cd 3d.

Fig. S22 Temporal fluorescence decay of 100 μ M Cd-P with 100 μ M Cu²⁺, Co²⁺, Ni²⁺ and Fe³⁺ in 5 mM Tris-HCl/NaCl buffer (pH 7.0) excited at 318 nm and monitored at 400 nm; The data are obtained at 54.9 ps per point.

Fig. S23 Temporal fluorescence decay of 100 μM Tb³⁺@Cd-P with 100 μM Fe³⁺ in 5 mM Tris-HCl/NaCl buffer (pH 7.0) excited at 328 nm and monitored at 390 nm; The data are obtained at 54.9 ps per point.

Table S5 Comparison of lifetimes of Cd-P, Cd-P-Cu²⁺, Cd-P-Fe³⁺, Cd-P-Co²⁺, Cd-P-Ni²⁺,

CPs	$\tau_1(ns)$	B ₁ (%)	$\tau_2(ns)$	B ₂ (%)	τ (ns)
Cd-P	24	4.58	1.95	95.42	2.960
Cd-P-Cu ²⁺	0.68	31.57	2.59	68.43	1.987
Cd-P-Fe ³⁺	0.93	26.74	3.42	73.26	2.754
Cd-P-Co ²⁺	1.13	34.95	2.38	65.05	1.943
Cd-P-Ni ²⁺	1.12	28.39	2.32	71.61	1.979
Tb ³⁺ @Cd-P	0.54	47.45	2.22	52.55	1.423
Tb ³⁺ @Cd-P-Fe ³⁺	0.52	56.87	2.34	43.13	1.305

 Tb^{3+} @Cd-P and Tb^{3+} @Cd-P-Fe³⁺.