In-situ synthesis of stretchable and highly stable multi-color carbon-

dots/polyurethane composite films for light-emitting devices

Fei Lian,^{1,4} Chuanxi Wang,^{*1} Qian Wu,² Minghui Yang,^{*3} Zhenyu Wang¹ and Chi Zhang^{*2,5}

¹Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China, 214122 ²International Joint Research Center for Photore-sponsive Molecules and Materials, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

³Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, P. R. China

⁴Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China

⁵School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China

Figure S1. The PL spectra of CDs/PU composite films prepared from different carbon precursors. A, m-PD; B, o-PD and C, 1,2,4-TD.

Carbon Precursor	Tem(°C)	$\tau_1(ns)$	B ₁ (%)	τ_2 (ns)	$B_{2}(\%)$	$\tau_{avg}\left(ns\right)$	χ^2	QY (%)
m-PD	40	2.19	32.45	5.11	67.55	3.57	1.11	2.02
o-PD	60	1.97	41.12	3.94	58.88	2.79	0.84	2.02
	100	2.42	54.66	4.56	45.34	3.07	0.86	1.72
1, 2, 4-TD	60	0.87	33.52	2.64	66.48	1.58	1.55	1.09

Table S1. PL lifetimes and QYs of B-, G-, Y-, R-CDs/PU films.

Figure S2. Excitation-independence spectra of multi-color CDs/PU films: a, B-CDs/PU films; b, G-CDs/PU films; c, Y-CDs/PU films and d, R-CDs/PU films.

Figure S3. FTIR spectra of B-, G-, Y- and R-CDs/PU films and bare PU films.

Figure S4. the high-resolution XPS O1s spectra of B-, G-, Y- and R-CDs/PU films.

Table S2. XPS analysis of the N1s and C1s spectra of B-, G-, Y-, R-CDs/PU films.

Sample	C-C/C=C	C-0	O=C-OH	N-C=O	C=N
B-PDs/PU	63.71%	29.20%	7.09%	57.90%	42.10%
G-PDs/PU	57.51%	31.85%	10.64%	40.59%	59.41%
Y-PDs/PU	59.24%	28.40%	12.36%	40.35%	59.65%
R-PDs/PU	58.36%	33.44%	8.20%	25.15%	74.85%

Figure S5. TGA curves of the G-CDs/PU films (red line) and of the bare PU film (back line).

Figure S6. Relative PL intensity of G-PDs/PU film kept for 1 h under different temperatures as indicated

Figure S7. Relative PL intensity of G-PDs/PU film kept for up to 10 h at 100 °C.