Synthesis, Optical, Electrochemical Properties and Anticancer Activity of (S)-

BINOL Cored, Triazole Bridged, Dendrimers Decorated with Rhodamine B

Surface Group

Jothinathan Sathiya Savithri and Perumal Rajakumar*

Department of Organic Chemistry, University of Madras, Guindy Campus

Chennai – 600 025, Tamil Nadu, INDIA

Tel No: +91 044 2220 2814; Fax: +91 44 2230 0488. E-Mail: perumalrajakumar@gmail.com

Supporting Information

Content

¹NMR and ¹³C NMR of the compound **1**, **2**, **3**, **5**, **8**S-2

Experimental Section

General procedure for Cu (I)-catalyzed 'Click' reaction (Procedure A)

A mixture of the azide and the alkyne in the presence of $CuSO_4.5H_2O$ (5 mol%) and sodium ascarbate (10 mol%) in a mixture of THF–H₂O (1:1) was stirred for 12 h at room temperature and after the completion of the reaction, solvent was evaporated. The residue thus obtained after evaporation of the solvent was dissolved in CHCl₃ (150 mL) and washed with NH₄Cl solution (50 mL) and brine solution (50 mL) and dried over Na₂SO₄ and then concentrated to give a residue, which was purified by column chromatography (SiO₂), using the eluent specified under each compound.

General procedure for the conversion of chloride/bromide to azide (Procedure B)

To the dendritic chloride/bromide (1.0 mmol, 1.0 equiv.) dissolved in a mixture of acetone/water (4 : 1, 60 mL) was added NaN₃ (1.5 mmol, 1.5 equiv.) and the reaction mixture was heated to 60 °C for 6 h. The reaction mixture was then cooled to room temperature. The solvent was evaporated and the reaction mixture was diluted with water (100 mL), and extracted with EtOAc (2 ×100 mL). The combined organic layer was washed with saturated NaCl (100 mL), dried over Na₂SO₄ and then solvent was evaporated to give the corresponding azido compound.

Zeroth generation dendrimer 1

Following the general procedure A 1.0 equiv. of the bispropargyloxy (S) -BINOL **12** (0.8g, 0.20 mmol) was reacted with 2.1 equiv. of the dendritic azide **6** (0.30g, 0.62 mmol,) to give the

zeroth generation dendrimer **1** as brown solid, after purification from silica gel column with CHCl₃-MeOH as eluent (19.5:0.5). Yield : 87%. M.P : 112–114 °C. ¹H NMR : (300 MHz, CDCl₃): $\delta_{\rm H}$ 1.14 (t, 24H, J = 7.2Hz); 3.32 (q, 16H, J = 6.3Hz); 3.59 (t, 4H, J = 7.5Hz), 4.16 (t, 4H, J = 7.2Hz), 5.21 (s, 4H); 6.19 (d, 3H, J = 8.7Hz); 6.29-6.6. 34 (m, 5H); 6.38 (s, 4H); 6.49 (d, 1H, J = 6.9Hz); 7.06-7.09 (m, 2H); 7.11-7.15 (m, 3H); 7.18-7.21 (m, 2H); 7.38-7.41 (m, 2H); 7.46-7.49 (m, 6H); 7.73 (d, 2H, J = 7.8Hz); 7.81 (d, 2H, J = 8.4Hz); 7.9 (s, 2H). ¹³C NMR :(75 MHz, CDCl₃): δ_C 12.5, 44.3, 46.2, 47.8, 61.8, 65.1, 97.8, 104.7, 108.2, 114.0, 122.9, 123.9, 128.2, 128.4, 130.5, 132.8, 139.2, 148.9, 153.3, 153.4, 159.7, 168.3. Elemental Analysis. calcd for C₈₆H₈₆N₁₂O₆: C, 74.65 ; H, 6.26; N, 12.15%. Found: C, 73.38; H, 6.06; N, 11.91%.

First generation dendrimer 2

Following the general procedure A 1.0 equiv. of the bispropargyloxy (S)-BINOL **12** (0.100g, 0.27 mmol) was reacted with 2.1 equiv. of the dendritic azide **9** (0.73g, 0.58 mmol) to give the first generation dendrimer **2** as dark red solid, after purification from silica gel column with CHCl₃-MeOH as eluent (19:1). Yield: 86%. M.P: 122–123 °C. ¹H NMR : (300 MHz, CDCl₃): $\delta_{\rm H}$ 1.12 (s, 48H); 3.30 (s, 32H); 3.87 (t, 8H, *J* = 7.5Hz), 4.27 (t, 8H, *J* = 7.2Hz), 5.10 (s, 8H); 5.26 (s, 4H); 5.38 (s, 4H); 6.18 (s, 9H); 6.23 (d, 9H, *J* =7.8Hz); 6.38 (s, 9H); 6.50 (s, 2H); 6.62 (d, 3H, *J* = 8.1Hz); 6.79-6.91 (s, 2H); 7.06 (d, 6H, *J* = 3Hz); 7.20 (d, 2H, *J* = 5.4Hz); 7.43 (s, 2H); 7.53 (s, 9H); 7.61-7.71 (m, 3H); 7.86 (s, 3H); 8.02 (s, 5H). ¹³C NMR : (75 MHz, CDCl₃): δ_C 12.5, 44.3, 46.2, 48.8, 59.0, 60.2, 61.8, 65.1, 97.9, 98.2, 104.7, 108.3, 114.0, 122.9, 123.4, 123.9, 125.2, 126.3, 128.2, 128.4, 129.4, 130.5, 132.8, 133.08, 139.2, 148.9, 153.3, 153.4, 159.7, 168.3. Elemental Analysis. calcd for C₁₇₂H₁₇₆N₃₀O₁₄: C, 71.55 ; H, 6.14; N, 14.55%. Found: C, 70.44; H, 6.01; N, 14.38%.

Second generation dendrimer 3

Following the general procedure A 1.0 equiv. of the bispropargyloxy (S)-BINOL **12** (0.17g, 0.46 mmol, 1.0 equiv.) was reacted with 2.1 equiv. of the dendritic azide **11** (1.26g, 0.98 mmol) to give the second generation dendrimer **3** as dark red solid, after purification from silica gel column with CHCl₃-MeOH as eluent (19:1). Yield: 78%. M.P: 131–132 °C. ¹H NMR : (300 MHz, CDCl₃): $\delta_{\rm H}$ 1.14 (s, 96H); 3.31 (s, 64H); 3.81 (t, 16H, *J* = 7.5Hz); 4.60 (t, 16H, *J* = 7.2Hz), 5.01 (s, 4H); 5.26 (s, 24H); 5.37 (s, 12H); 6.25 (s, 16H); 6.35-6.38 (m, 19H); 6.71 (s, 10H); 6.91 (s, 12H); 7.08 – 7.14 (m, 8H); 7.44 (s, 12H); 7.51-7.54 (m, 22H); 7.57-7.87(m, 16H); 7.97 (m, 10H). ¹³C NMR : (75 MHz, CDCl₃): δ_C 12.6, 44.3, 47.4, 53.8, 62.5, 64.1, 65.1, 97.9, 98.2, 104.8, 108.2, 109.0, 120.7, 122.4, 122.9, 123.9, 125.3, 126.3, 128.0, 128.2, 128.4, 128.5, 129.5, 130.4, 132.8, 133.0, 133.8, 144.2, 148.9, 153.2, 153.5, 153.7, 153.9, 168.6. Elemental Analysis. calcd for C₃₄₅H₃₅₇N₆₅O₃₀: C, 70.30; H, 6.11 ; N, 15.45%. Found: C, 69.89; H, 6.01; N, 15.01%.

Second generation chloro dendron 10

Using general procedure A the dendritic chloride **10** was obtained as pink solid from the 3,5-bispropargyloxy benzyl chloride **7** (0.250 g, 1.07 mmol) and the rhodamine azide **6** (1.14 g, 2.24 mmol) after purification from silica gel column with CHCl_{3:} MeOH as eluent (19:1). Yield: 86%. ¹H NMR : (300 MHz, CDCl₃): δ_H 1.15 (t, 48H, J = 6.6Hz); 3.30-3.32 (q, 32H, J = 6.6Hz); 3.59 (t, 8H, J = 7.5Hz), 4.16 (t, 8H, J = 7.2Hz); 4.68 (s, 2H); 5.03 (s, 12H); 5.40 (s, 4H); 6.25 (s, 11H); 6.37 (d, 12H, 8.2Hz); 6.45-6.49 (m, 10H); 7.08 (m, 4H); 7.44 (s, 8H); 7.58 (s, 6H); 7.87 (s, 4H). ¹³C NMR: (75 MHz, CDCl₃): δ_C 12.5, 41.9, 42.0, 44.3, 64.8, 69.3, 98.3, 105.8, 108.5, 122.8, 123.7, 127.9, 128.5, 130.8, 132.4, 149.2, 153.3, 153.5, 167.8, 168.0. Elemental Analysis. calcd for C₅₉H₁₆₉ClN₃₀O₁₄: C, 69.20; H, 6.17; N, 15.23%. Found: C, 68.91; H, 5.89; N, 14.92%.

Second generation azido dendron 11

Using the general procedure B, the dendritic azide **11** was obtained as pink solid from the dendritic chloride **10** (1.02 g, 0.40 mmol) and sodium azide (0.06 g, 1.20 mmol) after purification from silica gel column with CHCl₃ as eluent. Yield : 92%. ¹H NMR (300 MHz, CDCl₃): δ_H 1.14 (t, 48H, J = 6.0 Hz); 3.30-3.31 (q, 32H, J = 6.3Hz); 3.57 (s, 2H); 3.59 (t, 8H, J = 7.5Hz), 4.16 (t, 8H, J = 7.2Hz), 5.03 (s, 12H); 5.13 (s, 4H); 6.23 (d, 10H, J = 8.4Hz); 6.36 (d, 12H, 7.8Hz); 6.46 (s, 3H); 6.53 (s, 8H); 7.07 (s, 4H); 7.44 (s, 8H); 7.57(s, 6H); 7.87 (s, 4H). ¹³C NMR: (75 MHz, CDCl₃): δ_C 12.6, 40.1, 44.3, 47.8, 61.8, 65.2, 97.8, 104.7, 108.3, 114.0, 122.9, 123.9, 128.2, 128.4, 130.4, 132.8, 139.2, 148.9, 153.3, 153.4, 159.8, 168.4.

¹H NMR Spectrum (300MHz, CDCl₃) of dendrimer 1

¹³C NMR spectrum (75MHz, CDCl₃) of dendrimer 1

¹H NMR Spectrum (300MHz, CDCl₃) of dendrimer 2

¹³C NMR spectrum (75MHz, CDCl₃) of dendrimer 2

UNIV. OF MADRAS

¹H NMR Spectrum (300MHz, CDCl₃) of dendrimer 3

¹³C NMR spectrum (75MHz, CDCl₃) of dendrimer 3

¹H NMR Spectrum (300MHz, CDCl₃) of rhodamine b bromo dendron 5¹⁹

¹³C NMR spectrum (75MHz, CDCl₃) of rhodamine b bromo dendron 5¹⁹

¹H NMR Spectrum (300MHz, CDCl₃) of rhodamine b chloro dendron 8¹⁹

¹³C NMR spectrum (75MHz, CDCl₃) rhodamine b chloro dendron 8¹⁹