Electronic Supplementary Information:

Facile Thermal Exfoliation of Cu Sheets towards CuO/Cu₂O Heterojunction: A Cost-effective Photocatalyst with Visible-light Response for Promising Sustainable Applications

Yixuan Li^a, Xi Chen^{a, b}, Li Li^{a, b, c}*

^a College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, P. R. China.

^b College of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China.

^c College of Materials Science and Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, P. R. China.

^{*} Corresponding author: Li Li, female, Ph.D., Professor, doctoral tutor, mainly engaged in the preparation and photocatalytic properties of nanocomposites, +86 0452-2738351. E-mail: qqhrll@163.com; qqhrllil@126.com (L.Li).

Fig. S1 UV-Vis DRS spectrum of different CuO/Cu₂O composites.

Fig. S2 XRD patterns of CuO/Cu₂O-3 before and after photocatalytic removal for cycled thermal exfoliation.

Tab. S1 Element content analysis of CuO/Cu₂O-3 composite from XPS spectra (Atomic %)

Sample	C/%	O/%	Cu+/%	Cu ²⁺ /%
CuO/Cu ₂ O-3	61.99	28.77	8.28	0.96

Catalyst synthe	synthetic method	Light source	Catalyst	Dye	Concentration	Time	Efficiency
	synthetic method		loading (g)		(mg/L)	(min)	
CuO	Solid phase ¹	UV lamp	0.5	MB	10	210	33%
Cu/CuO	Liquid phase ²	UV lamp	0.02	MB	10	50	15%
Cu/Cu ₂ O	Solid phase ³	Xe lamp (420	0.28 N	MB	20	120	67%
	bond phase	nm cut-off)		IVID	20		0770
Cu@Cu ₂ O	Liquid phase ⁴	UV lamp	0.01	MB	10	50	4.7%
CuO/Cu ₂ O Ga	Gas nhase ⁵	Xe lamp (420	Not detectable MF	MB	MB 10	240	90%
	Gas phase	nm cut-off)		WID			
CuO/Cu ₂ O Liqu	Linuidaharah	Xe lamp (420	0.015	MO	(5	120	95%
	Liquid phase	nm cut-off)		MO	0.5		
CuO/Cu ₂ O/Cu	Liquid phase ⁷	Blue LED	0.015	MB	10	90	92%
CuO/Cu ₂ O	Solid phase	Xe lamp (420	0.05	RhB	20	120	73%
(This work)		nm cut-off)					

Tab. S2 Comparison of different performances of Cu-based photocatalysts for dye degradation

Tab. S3 The energy band gaps (Eg), conduction band (E_{CB}) and valence band potentials (E_{VB}) of CuO and Cu₂O

Sample	Eg/eV	E _{CB} /eV	E_{VB}/eV
CuO	1.7	0.46	2.16
Cu ₂ O	2.2	-0.28	1.92

*These values were obtained from the previous representative reports.^{8,9}

References

(1) R. Saravanan, S. Joicy, V. Gupta, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 2013, 33, 4725-4731.

(2) L. Xu, C. Srinivasakannan, J. Peng, L. Zhang, D. Zhang, J. Alloy Compd. 2017, 695, 263-269.

(3) W. Chen, Z. Fan, Z. Lai, J. Mater. Chem. A 2013, 1, 13862-13868.

(4) L. Xu, C. Srinivasakannan, J. Peng, M. Yan, D. Zhang, L. Zhang, Appl. Surf. Sci. 2015, **331**, 449-454

(5) N.D. Khiavi, R. Katal, S.K. Eshkalak, S.M. Panah, S. Ramakrishna, H.J. Yong, Nanomaterials 2019, **9**, 1011.

(6) D. Jiang, J. Xue, L. Wu, W. Zhou, Y. Zhang, X. Li, Appl. Catal. B Environ. 2017, 211, 199-204.

(7) S. Mosleh, M.R. Rahimi, M. Ghaedi, K. Dashtian, S. Hajati, Ultrasomn. Sonochem. 2018, 40, 601-610.

(8) H. Li, Z. Su, S. Hu, Y. Yan, Appl. Catal. B Environ. 2017, 207, 134-142.

(9) Y. Xu, M.A.A. Schoonen, Am. Mineral 2000, 85, 543-556.