Development of selective and sensitive colour reagent for gold and silver ions and its application to Desktop scanner analysis

Ashraf A. Mohamed, * Eslam H. Mahmoud, Mostafa M.H. Khalil,

Department of Chemistry, Faculty of Science, Ain shams University, Abbassia, Cairo-11566, Egypt

* Corresponding author: Tel: +2 01001578849; E-mail: aamohamd@sci.asu.edu.eg

Figure S1 Absorption spectra of silver and gold ternary complexes and their reagent blank. $[Ag^+] = [Au^{3+}] = 2 \ \mu g \ mL^{-1}$, $[SR] = 0.05 \ mmol \ L^{-1}$, $[Surfactant] = 2.0 \ mmol \ L^{-1}$, pH = 10.

Figure S2. Digital images of the effect of pH on the spectral characteristics of Ag-SR-CPC (A) and Au-SR-CTAC (B) complexes recorded using the desktop scanner at 300-dpi. i) sample; ii) blank. Except for the pH value, other conditions were those given in the recommended procedure. Captured images were arbitrarily compressed to fit into the page margins; however, for image analysis, the original uncompressed images were used.

Figure S3 Effect of SR concentration on the characteristics of Ag-SR-CPC and Au-SR-CTAC chelates; (A) based on spectrophotometric measurements; (B & C) based on digital image measurements. (B) Ag-SR-CPC chelate, (C) Au-SR-CTAC chelate. Except for the abscissa variable, other conditions are those of Figure S2.

Figure S4. Digital images of the effect of SR concentration on the characteristics of Ag-SR-CPC (A) and Au-SR-CTAC (B) complexes. Except for the SR concentration, other conditions were those given in Figure S2.

Figure S5 Digital images of the effect of some surfactants on the spectral characteristics of (A, B) Ag-SR chelate and (C, D) Au-SR chelate, respectively. Except for the surfactant type and concentration, other conditions were those given in Figure S2.

Figure S6 Effect of some solvents on the absorbances of the Ag-SR and Au-SR chelates; (A, D) based on spectrophotometric measurements; (B, C, E, F) based on digital image measurements. Except for the abscissa variable, other conditions are those of figure 2.

Figure S7. Digital images of the effect of solvent on the spectral characteristics of Ag-SR-CPC (A, B) and Au-SR-CTAC (C, D) complexes. Except for the solvent type and concentration, other conditions and symbols were those of Figure S2.

Figure S8 Effect of the order of addition on the spectral characteristics of Ag-SR-CPC (A, B) and Au-SR-CTAC (C, D) chelates. Except for the abscissa variable, other conditions and symbols are those of Figure S2. S, surfactant; B, buffer, SR, reagent.

Figure S9 Digital images of the molar ratio (A&B) and continuous variation (C&D) studies of Ag-SR (A, C) and Au-SR (B, D) chelates, respectively. Except for the molar ratio and mole fraction, other conditions were those of Figure S2.

			Ι.οσ.β			
			Spectrophotometry	R	G	В
Ag		Molar ratio	4.584	4.585		
	1:1	Continuous variation	4.585	4.587		
	1:2	Molar ratio	8.896		8.899	8.888
		Continuous variation	8.894		8.896	8.883
Au	1:2	Molar ratio	6.87	6.87		
		Continuous variation	6.909	6.891		
	1:3	Molar ratio	10.841		10.818	10.876
		Continuous variation	10.825		10.828	10.85

Table S1. Stability constant values of the silver and gold ternary complexes

Table S2. Comparison of spectrophotometric and DIBA-based Regressionparameters of calibration curves of Ag(I)-SR-CPC and Au(III)-SR-CTAC systems

Parameter	Ag-determination		Au-determination		
	Spectrophotometry	DIBA*	Spectrophotometry	DIBA*	
Slope ± SD	$0.337 {\pm} 0.0007$	$0.3385 \pm$	0.3122±0.0013	0.3098 ±	
		0.0047		0.0035	
Intercept \pm SD	0.0016 ± 0.001	$-0.3225 \pm$	-0.0056 ± 0.0017	$-0.3854 \pm$	
		0.0054		0.0027	
ε x 10 ⁻⁴ , L mol ⁻¹ cm ⁻¹	3.63	3.65	6.15	6.10	
R ²	0.9999	0.9982	0.9998	0.9989	
Linear range, µg mL ⁻¹	Up to 2.5	Up to 2.5	Up to 2.25	Up to 2.25	
LOD, µg mL ⁻¹	0.0089	0.0478	0.0163	0.02	
LOQ, µg mL ⁻¹	0.0296	0.1595	0.0544	0.0871	
Sandell's sensitivity,	0.0029	0.0029	0.0032	0.0032	
μg cm ⁻²					

* Based on color absorbance of the green channel (A_G) .