Supplementary Material

An improved ASM-GDA approach to evaluate the production kinetics of loosely bound and tightly bound extracellular polymeric substances in biological phosphorus removal process

Hai Cui,^a Shan-Shan Yang,^{*a} Ji-Wei Pang,^a Hai-Rong Mi,^b Chen-Chen Nuer^b and Jie Ding^a

a. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150000, PR China. E-mail: shanshanyang@hit.edu.cn

b. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, PR China

1. Sensitive analysis

According to previous studies ^[1], the normalised sensitivity coefficient $({}^{\delta}i_j)$ is defined as a ratio of the percentage change in the output variable $({}^{\gamma}i)$ to a 10% change in the input variable $({}^{\chi}j)$. Through sensitive analysis, a small variation in the value of a parameter $({}^{\chi}j)$ with high sensitivity will cause a large variation in the response predicted by the model. In this study, a 50% increase in the input variable is applied for the purpose of ${}^{\delta}i_j$ calculation. Through analyzing the effects of the model parameters on the extended ASM2 model outputs (${}^{PO}4$, ${}^{X}TB - EPS$, ${}^{X}LB - EPS$, and ${}^{X}PP$), the coefficient ${}^{\delta}i_j$ of the individual parameter is calculated by Eq. (S1).

$$\delta_{i,j} = \frac{x_j \Delta y_i}{y_i \Delta x_j} \tag{S1}$$

where the vector y_i (*i* =1, 2, ..., n) represents the model output variables; the vector x_j (*j*=1, 2, ..., n) represents the independent model parameters.

For each input variable, the influence of a model parameter on the model output can be interpreted as follows: $\delta_{i,j} < 0.5$ represents that the model parameter has no significant influence on the model output; $\delta_{i,j} > 0.5$ represents that the model parameter is influential and needs calibration.

References

- 1 E. Liwarska-Bizukojc, R. Biernacki, Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software, Bioresour, Technol., 2010, **101**, 7278-7285.
- 2 Laspidou, C.S., Rittmann, B.E., Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 2002, **36** (8), 1983-1992.
- 3 Ni, B.J., Fang, F., Rittmann, B.E., Yu, H.QI., Modeling Microbial Products in Activated Sludge under Feast-Famine Conditions. Environ. Sci. Technol.,2009, **43**, 2489-2497.
- 4 Jiang, T., Myngheer, S., Pauw, D.J.D., Spanjers, H., Nopens, I., Kennedy, M.D., Amy, G., Vanrolleghem, P. A., Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR). Water Res., 2008, **42** (20), 4955-4964.

Table S1 Kinetic rates expressions in the extended ASM2 model

Parameters	Description	Value	Unit	References			
Y_{H}	Heterotrophic yield coefficient	0.625	g COD/g COD	ASM2			
Y _{PAO}	PAOs yield coefficient	0.625	g COD/g COD	ASM2			
$Y_{H,S_{EPS}}$	Yield coefficient for growth on S_{EPS}	0.625	$g COD_x/g COD_{S_{EP!}}$	[2,3]			
Y_{PHA}	PHA requirement for storage of phosphate in the form of X_{PP}	0.20	g COD/g COD	ASM2			
Y_{PO_4}	PP requirement for storage of X_{PHA}	0.40	g P/g COD	ASM2			
μ_{H}	Maximum growth rate of heterotroph	6.00	d^{-1}	ASM2			
μ_{PAO}	Maximum growth rate of PAO	1.00	d^{-1}	ASM2			
$\mu_{S_{EPS}}$	Maximum rate of S_{EPS} degradation	0.0029	h^{I}	[2,3]			
b_H	Decay rate of heterotroph	0.40	d^{-1}	ASM2			
b _{PAO}	Decay rate of PAO	0.20	d^{-1}	ASM2			
b_{PP}	Decomposition rate constants of X_{PP}	0.20	d^{*1}	ASM2			
b _{PHA}	Decomposition rate constants of X_{PHA}	0.20	d^{-1}	ASM2			
q_{PP}	Rate constants of PP storage	1.50	d^{-1}	ASM2			
q_{PHA}	Rate constants of PHA storage	3.00	d^{-1}	ASM2			
k _{TB - EPS}	TB-EPS formation coefficient	0.18	g COD _{TB – EPS} /g C([2,3]			
k _{LB – EPS}	LB-EPS formation coefficient	0.18	g COD _{LB – EPS} /g CC	[2,3]			
К ₀₂	Dissolve oxygen affinity constant	0.20	$g O_2/m^3$	ASM2			
K _s	S_s affinity constant for heterotroph	4.00	g COD/m ³	ASM2			
K_{PO_4}	Affinity constant for heterotroph	0.01	$g P/m^3$	ASM2			
K _{ALK} r _{s,s_{EPS} r_{s_{EPS}}}	Alkalinity affinity constant for heterotroph Affinity constant for <i>S_{EPS}</i> formation Biomass affinity constant for <i>S_{EPS}</i>	0.10 0.02 85	mol(HCO ₃)/m ³ y cov _{SEPS} /m y cov _{SEPS} /m	ASM2 [2,3] [2,3]			
i _{P,BM}	P contents in X_H , X_{PAO} , X_{TB-EPS} , X_{LB-EPS}	0.02	g P/g COD	ASM2, [4]			
k _{h,TB – EPS}	TB-EPS hydrolysis rate constant	0.228	d^{-1}	[2,3]			
k _{h,LB – EPS}	LB-EPS hydrolysis rate constant	0.4	d^{-1}	Extended ASM2			
f _{pp,tb – eps}	X_{TB-EPS} fraction during X_{PP} storage and decomposing processes	0.09	$g S_{PO_4}/g X_{TB-EPS}$	Extended ASM2			
$f_{PP,LB-EPS}$	X_{LB-EPS} fraction during X_{PP} storage and decomposing processes	0.04	$g S_{PO_4}/g X_{LB-EPS}$	Extended ASM2			

	Process	S ₀	S _s	S _{PO4}	H ₄ S _{ALK}	S _{EPS}	X _{TB-EPS}	X _{LB – EPS}	X _H	X _I	X _S	X _{PAO}	X _{PP}	X _{PHA}
1	Aerobic growth of $X_{H \text{ on}} S_S$	$-\frac{\left[1-k_{TB-EPS}-k_{TB-ES}-k_{TB-ES}-k_{TB-ES}\right]}{Y_{H}}$	$\frac{PS}{PS} - \frac{1}{Y_H}$	$- [i_{P,X_{TB}-EPS} \cdot \frac{k_{TB-EF}}{Y_H}$			$\frac{k_{TB-EPS}}{Y_H}$	$\frac{k_{LB-EPS}}{Y_H}$	1 – k _{TB – El}	PS				
2	Aerobic growth of $X_{\rm H}$ on S_{EPS}	$-\frac{1-Y_{H,S_{EPS}}}{Y_{H,S_{EPS}}}$		v _{2,P0} 4		$-\frac{1}{Y_{H,S_{EP}}}$	- S		1					
3	Formation of S_{EPS} from X_{TB-EPS}			v _{3,P04}		1	-1							
4	Formation of S_{EPS} from X_{LB-EPS}			v _{4,P0} 4		1		-1						
5	Storage of X_{PHA}		-1	Y _{P04}									$-Y_{PO_4}$	1
6	Storage of X_{pp}	– Y _{PHA}		-1			f _{pp,tb – eps}	; f _{PP,LB} – EP.	5				$1 - f_{PP,TB - B}$	$EP_{i} - Y_{PHA}$
7	Decomposin g of X _{PHA}		1											-1
8	Decomposin g of ^X _{PP}			$1 - f_{PP,TB - EPS} - f_{PP,L}$			f _{PP,TB – EPS}	, f _{PP,LB – EP}	5				-1	

 Table S3 Stoichiometric matrix for the extended ASM2 model

