Three chiral one-dimensional lanthanide-ditoluoyl-tartrate

bifunctional polymers exhibiting luminescence and magnetic

behaviors

Mei-rong Han^{a†}, Han-tao Zhang^{a†}, Jia-nan Wang^a, Si-si Feng^{*a,b}, Li-ping Lu^{*a,b}

^{*a*}Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.

^bKey Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.

1						
Tb1—O4 ⁱ	2.302 (6)	Tb1—O1 ^{iv}	2.347 (5)	Tb1—O9 ^v	2.554 (8)	
Tb1—O4 ⁱⁱ	2.302 (6)	Tb1—O1 ^v	2.347 (5)	Tb1—O9	2.554 (8)	
Tb1—O4 ⁱⁱⁱ	2.302 (6)	Tb1—O1	2.347 (5)	Tb1—O9 ^{iv}	2.554 (8)	
Tb1Tb1	7.6178(5)					
O4 ⁱ —Tb1—O4 ⁱⁱ	80.3 (2)	O4 ⁱⁱⁱ —Tb1—O1 ^{iv}	85.2 (2)	O4 ⁱ —Tb1—O1	85.3 (2)	
O4 ⁱ —Tb1—O4 ⁱⁱⁱ	80.3 (2)	O4 ⁱ —Tb1—O1 ^v	140.2 (2)	O4 ⁱⁱ —Tb1—O1	133.3 (2)	
O4 ⁱⁱ —Tb1—O4 ⁱⁱⁱ	80.3 (2)	O4 ⁱⁱ —Tb1—O1 ^v	85.3 (2)	O4 ⁱⁱⁱ —Tb1—O1	140.2 (2)	
O4 ⁱ —Tb1—O1 ^{iv}	133.3 (2)	O4 ⁱⁱⁱ —Tb1—O1 ^v	133.3 (2)	O1 ^{iv} —Tb1—O1	78.2 (2)	
O4 ⁱⁱ —Tb1—O1 ^{iv}	140.2 (2)	O1 ^{iv} —Tb1—O1 ^v	78.2 (2)	O1 ^v —Tb1—O1	78.2 (2)	
O4 ⁱ —Tb1—O9 ^v	69.7 (3)	O4 ⁱ —Tb1—O9	140.3 (3)	O9 ^v —Tb1—O9	119.86 (3)	
O4 ⁱⁱ —Tb1—O9 ^v	140.3 (3)	O4 ⁱⁱ —Tb1—O9	69.7 (3)	O4 ⁱ —Tb1—O9 ^{iv}	69.7 (3)	
O4 ⁱⁱⁱ —Tb1—O9 ^v	69.7 (3)	O4 ⁱⁱⁱ —Tb1—O9	69.7 (3)	O4 ⁱⁱ —Tb1—O9 ^{iv}	69.7 (3)	
O1 ^{iv} —Tb1—O9 ^v	63.7 (2)	O1 ^{iv} —Tb1—O9	70.6 (2)	O4 ⁱⁱⁱ —Tb1—O9 ^{iv}	140.3 (3)	
O1v—Tb1—O9v	134.4 (2)	O1 ^v —Tb1—O9	63.7 (2)	O1 ^{iv} —Tb1—O9 ^{iv}	134.4 (2)	

Table S1. Selected bond lengths (Å), Ln...Ln distances (Å) and angles (°) for 1–3

O1—Tb1—O9 ^v	70.6 (3)	O1—Tb1—O9	134.4 (2)	O1v—Tb1—O9 ^{iv}	70.6 (3)	
O1—Tb1—O9 ^{iv}	63.7 (2)	O9 ^v —Tb1—O9 ^{iv}	119.86 (3)	O9—Tb1—O9 ^{iv}	119.86 (3)	
Symmetry codes: (i) $x, y, z = 1$; (ii) $-y + 1, x - y + 1, z = 1$; (iii) $-x + y, -x + 1, z = 1$; (iv) $-x + y$,						
-x + 1, z; (v) $-y + 1, x - y + 1, z;$ (vi) $x, y, z + 1.$						

2						
Dy1—O4 ⁱ	2.304 (5)	Dy1—O1 ^{iv}	2.355 (4)	Dy1—O9 ^v	2.576 (5)	
Dy1—O4 ⁱⁱ	2.304 (5)	Dy1—O1	2.355 (4)	Dy1—O9 ^{iv}	2.576 (5)	
Dy1—O4 ⁱⁱⁱ	2.304 (5)	Dy1—O1 ^v	2.355 (4)	Dy1—O9	2.576 (5)	
Dy1Dy1	7.6520 (5)					
O4 ⁱ —Dy1—O4 ⁱⁱⁱ	79.20 (1)	O4 ⁱⁱⁱ —Dy1—O1	86.85 (1)	O4 ⁱ —Dy1—O9 ^v	139.64 (1)	
O4 ⁱⁱ —Dy1—O4 ⁱⁱⁱ	79.20 (1)	O1 ^{iv} —Dy1—O1	76.83 (1)	O4 ⁱⁱ —Dy1—O9 ^v	70.32 (1)	
O4 ⁱ —Dy1—O1 ^{iv}	134.36 (1)	O4 ⁱ —Dy1—O1 ^v	86.84 (1)	O4 ⁱⁱⁱ —Dy1—O9 ^v	69.77 (1)	
O4 ⁱⁱ —Dy1—O1 ^{iv}	86.85 (1)	O4 ⁱⁱ —Dy1—O1 ^v	140.38 (1)	O1 ^{iv} —Dy1—O9 ^v	70.62 (1)	
O4 ⁱⁱⁱ —Dy1—O1 ^{iv}	140.38 (1)	O4 ⁱⁱⁱ —Dy1—O1 ^v	134.36 (1)	O1—Dy1—O9 ^v	64.08 (1)	
O4 ⁱ —Dy1—O1	140.38 (1)	O1 ^{iv} —Dy1—O1 ^v	76.83 (1)	O1 ^v —Dy1—O9 ^v	133.40 (1)	
04 ⁱ —Dy1—O9 ^{iv}	69.77 (1)	O9 ^v —Dy1—O9 ^{iv}	119.848	O1 ^v —Dy1—O9	70.62 (1)	
O4 ⁱⁱ —Dy1—O9 ^{iv}	139.64 (1)	O4 ⁱ —Dy1—O9	(1) 70.32 (1)	O9 ^v —Dy1—O9	119.850 (1)	
O4 ⁱⁱⁱ —Dy1—O9 ^{iv}	70.32 (1)	O4 ⁱⁱ —Dy1—O9	69.77 (1)	O9 ^{iv} —Dy1—O9	119.847	
O1 ^{iv} —Dy1—O9 ^{iv}	133.40 (1)	O4 ⁱⁱⁱ —Dy1—O9	139.64 (1)	O1v—Dy1—O9 ^{iv}	64.08 (1)	
O1—Dy1—O9 ^{iv}	70.62 (1)	01 ^{iv} —Dy1—O9	64.08 (1)	O1—Dy1—O9	133.40 (1)	
O4 ⁱ —Dy1—O4 ⁱⁱ	79.20(1)	O4 ⁱⁱ —Dy1—O1	134.36(1)	01—Dy1—O1 ^v	76.83 (1)	

Symmetry codes : (i) -x + y, -x, z - 1; (ii) -y, x - y, z - 1; (iii) x, y, z - 1; (iv) -y, x - y, z; (v) -x + y, -x, z; (vi) x, y, z + 1.

3					
Ho1—O4 ⁱ	2.297 (8)	Ho1—O1	2.329 (9)	Ho1—O9 ^{iv}	2.554 (7)
Ho1—O4 ⁱⁱ	2.297 (8)	Ho1—O1 ^{iv}	2.329 (9)	Ho1—O9	2.554 (7)
Ho1—O4 ⁱⁱⁱ	2.297 (8)	Ho1—O1 ^v	2.329 (9)	Ho1—O9 ^v	2.554 (7)
Ho1Ho1	7.6372(5)				
O4 ⁱ —Ho1—O4 ⁱⁱ	79.6 (3)	O4 ⁱ —Ho1—O1 ^{iv}	134.4 (4)	O4 ⁱⁱⁱ —Ho1—O1 ^v	134.4 (4)
O4 ⁱ —Ho1—O4 ⁱⁱⁱ	79.6 (3)	O4 ⁱⁱ —Ho1—O1 ^{iv}	86.6 (3)	O1—Ho1—O1 ^v	76.9 (3)
O4 ⁱⁱ —Ho1—O4 ⁱⁱⁱ	79.6 (3)	O4 ⁱⁱⁱ —Ho1—O1 ^{iv}	140.1 (4)	01 ^{iv} —Ho1—O1 ^v	76.9 (3)
O4 ⁱ —Ho1—O1	140.1 (4)	01—Ho1—O1 ^{iv}	76.9 (3)	O4 ⁱ —Ho1—O9 ^{iv}	70.1 (4)
O4 ⁱⁱ —Ho1—O1	134.4 (4)	O4 ⁱ —Ho1—O1 ^v	86.6 (3)	O4 ⁱⁱ —Ho1—O9 ^{iv}	140.3 (3)
O4 ⁱⁱⁱ —Ho1—O1	86.6 (3)	O4 ⁱⁱ —Ho1—O1 ^v	140.1 (4)	O4 ⁱⁱⁱ —Ho1—O9 ^{iv}	70.4 (3)
O1—Ho1—O9 ^{iv}	70.0 (3)	O4 ⁱⁱⁱ —Ho1—O9	140.3 (3)	O4 ⁱ —Ho1—O9 ^v	140.3 (3)
O1 ^{iv} —Ho1—O9 ^{iv}	133.0 (3)	O1—Ho1—O9	133.0 (3)	O4 ⁱⁱ —Ho1—O9 ^v	70.4 (3)
O1 ^v —Ho1—O9 ^{iv}	64.0 (4)	O1 ^{iv} —Ho1—O9	64.0 (4)	O4 ⁱⁱⁱ —Ho1—O9 ^v	70.1 (4)
O4 ⁱ —Ho1—O9	70.4 (3)	O1 ^v —Ho1—O9	70.0 (3)	O1—Ho1—O9 ^v	64.0 (4)
O4 ⁱⁱ —Ho1—O9	70.1 (4)	O9 ^{iv} —Ho1—O9	119.78 (4)	O1 ^{iv} —Ho1—O9 ^v	70.0 (3)
O1 ^v —Ho1—O9 ^v	133.0 (3)	O9 ^{iv} —Ho1—O9 ^v	119.79 (4)	O9—Ho1—O9 ^v	119.78 (3)
Symmetry codes: (i) $-x + y$, $-x$, $z - 1$; (ii) $-y$, $x - y$, $z - 1$; (iii) x , y , $z - 1$; (iv) $-y$, $x - y$, z ; (v) $-x + y$					
y, -x, z; (vi) $x, y, z + 1$.					

Table S2. Hydrogen-bond geometry (Å, °) for 1						
D—H…A	D—H	HA	DA	D—H…A		
09—H9…O6 ⁱ	0.93	2.08	2.960 (14)	157		
O2—H2O3 ⁱⁱ	0.83	1.66	2.471 (9)	166		
C18 ^{vi} —H18 ^{vi} … <i>Cg</i> ⁱⁱⁱ	0.93	2.55	3.419(7)	155		

Symmetry codes: (i) -x + y, -x + 1, z; (ii) x, y, z - 1; (iii) x, y, z - 1; (vi) x, y, z - 3.

Figure S1. IR spectra for D-H₂DTTA and 1-3 (KBr, cm⁻¹)

Figure S2. The PXRD patterns of complexes 1–3 (calculation and experiment) at room temperature.

Figure S3. TGA plots of complexes 1–3.

Figure S4. Digital photograph of complexes 1–3 under irradiation of UV light.

Scheme S1. Mathematical expressions describing the temperature dependence of the magnetic susceptibility due to the depopulation of the excited Stark levels.

$$\chi_{Tb} = \frac{Ng^{2}\beta^{2}}{kT} \frac{2e^{-d/kT} + 4e^{-2d/kT} + 18e^{-9d/kT} + 32e^{-16d/kT} + 50e^{-25d/kT} + 72e^{-36d/kT}}{1 + 2e^{-d/kT} + 2e^{-2d/kT} + 2e^{-9d/kT} + 2e^{-16d/kT} + 2e^{-25d/kT} + 2e^{-36d/kT}}$$

$$\chi_{Dz} = \frac{Ng^{2}\beta^{2}}{kT} \frac{0.5e^{-0.25d/kT} + 4.5e^{-2.25d/kT} + 12.5e^{-6.25d/kT} + 24.5e^{-12.25d/kT} + 40.5e^{-20.25d/kT} + 60.5e^{-30.25d/kT} + 84.5e^{-42.25d/kT} + 112.5e^{-56.25d/kT}}{1 + 2e^{-0.25d/kT} + 2e^{-2.25d/kT} + 2e^{-2.25d/kT} + 2e^{-2.25d/kT} + 2e^{-30.25d/kT} + 2e^{-30.25d/kT} + 2e^{-36.25d/kT} + 2e^{-56.25d/kT}}}$$

$$\chi_{\text{Ho}} = \frac{Ng^2\beta^2}{kT} \frac{2e^{-d/kT} + 8e^{-4d/kT} + 18e^{-9d/kT} + 32e^{-16d/kT} + 50e^{-25d/kT} + 72e^{-36d/kT} + 98e^{-49d/kT} + 128e^{-64d/kT} + 128e^$$

Figure S5. (a) In-phase *ac* magnetic susceptibility (χ_m') and (b) out-of-phase *ac* magnetic susceptibility (χ_m'') for 1 at temperatures from 2 to 22 K.