Supporting Information:

Optimization of the Electron Transport in Quantum Dot Light-Emitting Diodes by codoping ZnO with Gallium(Ga) and Magnesium(Mg)

Hong Hee Kim,^{‡a,b} David O Kumi,^{‡c} Kiwoong Kim,^d Donghee Park,^a Yeonjin Yi,^d So Hye Cho,^e Cheolmin Park,^b OM Ntwaeaborwa^{*f} and Won Kook Choi^{*a}

a. Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea. E-mail: wkchoi@kist.re.kr; Tel: +82-2-958-5562

- b. Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea.
- c. School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa.
- d. Physics and Applied Physics, Yonsei University, Seoul 120–749, South Korea.
- e. Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- f. School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. E-mail: martin.ntwaeaborwa@wits.ac.za; Tel: +2711 717 6887
- [‡] These authors contributed equally.
- * Corresponding author: wkchoi@kist.re.kr; martin.ntwaeaborwa@wits.ac.za

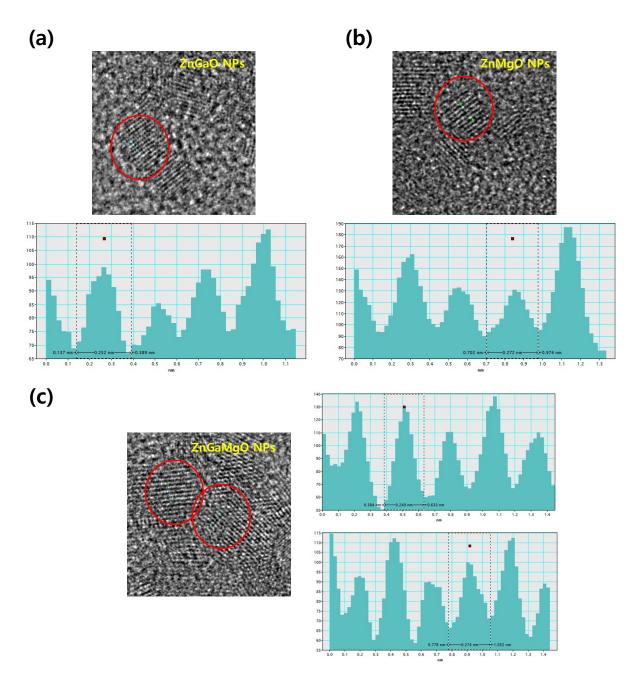


Figure S1. HRTEM images and a line profile on the (a) ZnGaO, (b) ZnMgO, and (c) ZnGaMgO NPs.

The donor concentration (N_D) of four materials is calculated using to BM shift equation: The Fermi levels of four materials (ZnO, ZnGaO, ZnMgO, and ZnGaMgO NPs) are located about the CBM with energy as high as 0.13-0.46 eV, which indicates that energy levels are degenerate. This degeneration is observed as the bandgap widens in the semiconductor, and the concentration can be determined by the well-known Burstein-Moss shift equation (1).

$$\Delta E_{BM} = E_F - E_{CBM} = \left(\frac{h^2}{8\pi^2 m_{eh}^*}\right) \left(3\pi^2 n\right)^{\frac{2}{3}},$$
(1)

where m^*_{eh} , E_F , E_{CBM} , and n are the electron-hole reduced mass (0.19 m_e), Fermi level, minimum energy of the conduction band, and carrier concentration, respectively. The optical bandgap of 3.50, 3.58, 3.75, and 3.61 eV measured from UV-vis absorption (figure 4(a)), corresponding to $\Delta E_{BM} = 0.13$, 0.26, 0.46, and 0.38 eV. Using ΔE_{BM} , the donor concentration (N_D)

Donor concentration (N_D)		
1.76 x 10 ¹⁹ cm ⁻³		
4.99 x 10 ¹⁹ cm ⁻³		
1.17 x 10 ²⁰ cm ⁻³		
8.83 x 10 ¹⁹ cm ⁻³		
	1.76 x 10 ¹⁹ cm ⁻³ 4.99 x 10 ¹⁹ cm ⁻³ 1.17 x 10 ²⁰ cm ⁻³	

of four materials can be deduced according to equation (1). Calculated values are as below.

	C1s	O1s	Mg1s	Zn2p ³	Ga2p ³	Total
ZnO	19.7	39.7	-	40.6	-	100
ZnGaO	20.3	41.2	-	33.9	4.6	100
ZnMgO	25.6	41.9	4.7	27.8	-	100
ZnGaMgO	22.1	41.5	0.9	31.7	3.8	100
	Mg		Zn	Ga		Total
ZnGaO	-		88	12		100
ZnMgO	14		86	-		100
ZnGaMgO	3		87	10		100

 Table 1. Atomic Concentration (%) of ZnO, ZnGaO, ZnMgO, and ZnGaMgO NPs as measured by XPS and the relative concentration of Ga and Mg elements vs Zn element.

	ΔG (eV)				
	CBM _{ETL} /AI	CBM_{ETL}/CBM_{QD}	VBM _{ETL} /VBM _{QD}		
	(Schottky barrier)				
ZnO	1.09	0.99	0.21		
$Zn_{0.88}Ga_{0.12}O$	0.44	0.34	0.94		
$Zn_{0.87}Ga_{0.1}Mg_{0.03}O$	0.41	0.31	1.00		
Zn _{0.86} Mg _{0.14} O	0.25	0.15	1.30		

 Table 2. Energy offsets formed at the interface of QDs/ETLs and ETLs/Al electrode.