Sulfation effect of Ce/TiO₂ catalyst for selective catalytic reduction of NOx with NH₃: Mechanism and kinetic study

Wenjie Zhang^a, Guofu Liu^a, Jie Jiang^b, Yuchen Tan^c, Qi wang^d, Chenghong Gong^e,

Dekui Shen^{a,*}, Chunfei Wu^{f,*}

^a Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and

Environment, Southeast University, Nanjing 210096, Jiangsu, PR China

^b Engineering Laboratory of Energy System Process Conversion & Emission Control Technology of Jiangsu

Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, PR China

° Nanjing Foreign Language School, Nanjing 210018, Jiangsu, PR China

^d College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, PR China

e Jiangsu Yanxin SCI-TECH Co., Ltd, WuXi 214426, PR China

^fSchool of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, United Kingdom

Supporting Information(SI)

13 pages: 7 figures and 1 table

^{*} Corresponding author: Dekui Shen, E-mail: <u>101011398@seu.edu.cn.</u>

^{*} Corresponding author: Chunfei Wu, E-mail: c.wu@qub.ac.uk

1. Caption to Tables / Figures

1.1 Catalytic performance

Figure S1. SCR performance and N₂O selectivity of 240 °C-sulfated Ce/TiO₂. Reaction conditions:

[NH₃]=[NO]=600 ppm, [O₂]=3%, N2 balance, GHSV=40000 h-1

1.2 XRD analysis

Figure S2. The XRD patterns of fresh Ce/TiO_2 and sulfated Ce/TiO_2 catalysts.

Figure S3. N_2 adsorption-desorption isotherm (A) and pore size distribution curves (B) of fresh

catalysts and catalysts after sulfation treatment at 180 $^{\circ}\mathrm{C}$ and 240 $^{\circ}\mathrm{C}.$

1.4 Surface acidity

Figure S4. In-situ DRIFTS of NH₃ adsorption/desorption over fresh catalyst and pre-sulfated

catalysts (A) Fresh Ce/TiO₂, (B) 180°C-sulfated catalyst.

Table S1. Normalized	integration	area from	in-situ	DRIFTS	at 150	°C
	0					

Samples	Total surface acidities	Lewis acidities ^a	Bronsted acidities ^b	SO4 ^{2-c}
Fresh Ce/TiO ₂	5.09	4.47	0.62	0
180 °C-sulfated	6.02	0.48	5.54	2.78

a. Integrated area from in-situ DRIFTS at 150 °C, peaks in the range of 1300-1150 $\rm cm^{-1}$

b. Integrated area from in-situ DRIFTS at 150 °C, peak centered at 1670 cm⁻¹ for original catalyst and 1430 cm⁻¹ for sulfated catalyst

c. Integrated area from in-situ DRIFTS at 150 °C, peak in the range of 1367-1351 $\rm cm^{-1}$

Figure S5. Integration area from in-situ DRIFTS of reaction between NH_3+O_2 and pre-adsorbed

NO over (A)fresh Ce/TiO2, (B)180 °C-sulfated catalyst

1.6 Kinetic study over fresh Ce/TiO₂ catalyst

Figure S6. Dependences of (A) NH₃ conversion rate δ_{NH3} , (B) NO conversion rate δ_{NO} , (C) N₂O conversion rate δ_{N2O} , (D) the rate of SCR reaction δ_{SCR} , (E) the rate of C-O reaction δ_{C-O} on gaseous NO concentration over original Ce/TiO₂ catalyst. Reaction conditions: [NH₃]=600ppm, [NO]=0-600ppm, [O₂]=3%, catalyst mass=33.7-135mg, total flow rate=1350ml/min, the GHSV=600000-2400000cm⁻¹g⁻¹h⁻¹.

1.7 Kinetic study over sulfated Ce/TiO₂ catalyst

Figure S7. Dependences of (A) NH₃ conversion rate δ_{NH3} , (B) NO conversion rate δ_{NO} , (C) N₂O conversion rate δ_{N2O} , (D) the rate of SCR reaction δ_{SCR} , (E) the rate of C-O reaction δ_{C-O} on gaseous NO concentration over pre-sulfated Ce/TiO₂ catalysts. Reaction conditions: [NH₃]=600ppm, [NO]=0-600ppm, [O₂]=3%, catalyst mass=33.7-135mg, total flow rate=1350ml/min, the GHSV=600000-2400000cm⁻¹g⁻¹h⁻¹.

Derivation of the NH₃-SCR reaction kinetic model

1. Reaction mechanism

The SCR reaction and the NSCR reaction followed E-R reaction mechanism and C-O reaction can be described as follows^{1, 2}:

$$\mathrm{NH}_{3(\mathrm{g})} \xrightarrow{k_1} \mathrm{NH}_{3(\mathrm{ad})}$$

(1S)

$$NH_{3(ad)} + Ce^{4+} = O \xrightarrow{k_2} Ce^{3+} - OH + NH_2$$

(2S)

$$NH_2 + NO_{(g)} \xrightarrow{k_3} N_2 + H_2O$$

(3S)

$$NH_2 + Ce^{4+} = O \xrightarrow{k_4} NH + Ce^{3+} - OH$$

(4S)

$$NH + Ce^{4+} = O + NO_{(g)} \xrightarrow{k_5} Ce^{3+} - OH + N_2O$$

(5S)

$$NH + Ce^{4+} = O + 1/2O_2 \xrightarrow{k_6} NO + Ce^{3+} - OH$$

(6S)

Under the SCR condition, the gaseous NH₃ firstly intensely adsorbed on the surface of Ce/TiO₂ catalysts, especially on the pre-sulfated Ce/TiO₂ to form adsorbed NH₃ and NH₄⁺ (i.e., **Reaction 1S**), which is demonstrated by many reporters^{3, 4}. Then, the adsorbed NH₃ or NH₄⁺ will be activated by the Ce⁴⁺ on Ce/TiO₂ to form NH₂ (i.e., **Reaction 2S**), which then reacts with gaseous NO to form N₂ (i.e., **Reaction 3S**). Meanwhile, the NH₂ species on the surface can be further oxidized to NH due to the excessive H-abstraction (i.e., **Reaction 4S**) ,which will further react with NO to form N₂O (i.e., **Reaction 5S**), which is also called NSCR. Furthermore, the NH can be deeply oxidized to NO by the **Reaction 6S**, which is also called C-O reaction. It could not be observed by DRIFT spectra due to the low concentration of intermediates (i.e., NH₂ and NH species).

Besides, the NO reduction over original and pre-sulfated Ce/TiO_2 catalyst through L-H reaction mechanism can be described as follows⁵:

$$NO_{(g)} \xrightarrow{k_7} NO_{(ad)}$$

(7S)

$$NO_{(ad)} + Ce^{4+} = O \xrightarrow{k_8} Ce^{3+} - O - NO$$

(8S)

$$Ce^{3+} - O - NO + NH_{3(ad)}$$
$$\xrightarrow{k_9} Ce^{3+} - O - NO - NH_3$$
$$\xrightarrow{k_{10}} Ce^{3+} - OH + H_2O + N_2$$

(9S)

Gaseous NO firstly adsorbed on the surface of Ce/TiO₂ and pre-sulfated Ce/TiO₂ catalysts to form physically adsorbed NO (i.e., **Reaction 7S**). Then, the physically adsorbed NO was oxidized by Ce⁴⁺ to form NO₂⁻ (i.e., **Reaction 8S**). Finally, the adsorbed NO₂⁻ will react with adsorbed NH₃ to form NH₄NO₂ or NH₄NO₃, which will further decompose to N₂ and H₂O (i.e., **Reaction 9S**).

2. Reaction kinetic study

According to the **Reaction 3S** and **Reaction 9S**, the kinetic equation of SCR reaction following E-R reaction pathway and L-H reaction pathway can be described as:

$$\frac{d[N_2]}{dt}\Big|_{E-R} = k_3[NO_{(g)}][NH_2]$$
(108)

$$\frac{d[N_2]}{dt}\Big|_{L-H} = k_{10}[Ce^{3+} - O - NO - NH_3]$$
(11S)

Where, k_3 , k_{10} , $[NH_2]$ and $[Ce^{3+}-O-NO-NH_3]$ were the kinetic constant of **Reaction 3S** and **Reaction 9S**, the concentration of adsorbed NH₂ and the NH₄NO₂ or NH₄NO₃ formed on the surface of Ce/TiO₂, respectively.

Meanwhile, the kinetic equation of the formation of NH2 can be described as:

$$\frac{d[NH_2]}{dt} = k_2[Ce^{4+} = O][NH_{3(ad)}]$$
(128)

Where k_2 , [Ce⁴⁺=O] and [NH_{3(ad)}] were the rate constant of **Reaction 2S**, the concentration of [Ce⁴⁺=O] and the adsorbed NH₃.

The kinetic equation of the formation of NH₄NO₂ can be described as:

$$\frac{d[Ce^{3+} - O - NO - NH_3]}{dt} = k_9 [Ce^{3+} - O - NO][NH_{3(ad)}]$$
(138)

Where k_9 , [Ce³⁺-O-NO] and [NH_{3(ad)}] were the rate constant of **Reaction 9S**, the concentration of NO₂⁻ and the adsorbed NH₃.

$$\frac{d[Ce^{3+} - O - NO]}{dt} = k_8[Ce^{4+} = O][NO_{(ad)}]$$
(14S)

Where k_8 and $[NO_{(ad)}]$ were the rate constant of **Reaction 8S** and the adsorbed NO.

Due to the very high GHSV of the reaction system, it can be approximately considered that the adsorbed NO and NH₃ on the surface of Ce/TiO₂ were saturated with the increase of NO concentration and reaction temperature. Thus, the $[NO_{(ad)}]$ and $[NH_{3(ad)}]$ can be seen as the constants during the kinetic experiments⁵. Therefore, the SCR reaction following L-H reaction pathway was nearly independent on the gaseous NO and NH₃ concentration. Moreover, the saturated adsorbed NH₃ contributed to the constant NH₂ concentration on the surface as shown in **Reaction 2S**.

Therefore, the total SCR reaction rate can be described as follows:

$$\delta_{SCR} = \frac{d[N_2]}{dt} \Big|_{E-R} + \frac{d[N_2]}{dt} \Big|_{L-H}$$

= k_3[NO_(g)][NH₂] + k₁₀[Ce³⁺ - O - NO - NH₃] (15S)
= k_{E-R}[NO_(g)] + k_{L-H}

$$\mathbf{k}_{\mathrm{E-R}} = \mathbf{k}_3[\mathrm{NH}_2] \tag{16S}$$

$$k_{L-H} = k_{10} [Ce^{3+} - O - NO - NH_3]$$
(178)

Where, k_{E-R} , k_{L-H} were the kinetic constant of the SCR reaction following E-R reaction pathway and L-H reaction pathway.

According to **Reaction 3S**, **5S** and **6S**, the kinetic equation of the H-abstraction of NH_2 , the oxidation of NH to N_2O , and the oxidation of NH to NO can be described as follows:

$$\frac{d[NH]}{dt} = -\frac{d[NH_2]}{dt} = k_4[NH_2][Ce^{4+} = O]$$
(18S)

$$\frac{d[NH]}{dt} = -k_5[NH][NO_{(g)}][Ce^{4+} = O]$$
(198)

$$\frac{d[NH]}{dt} = -k_6[NH][Ce^{4+} = O]$$
(20S)

Where, the k_4 , k_5 , k_6 and [Ce⁴⁺=O] were the kinetic constant of the **Reaction 4S**, **5S**, **6S** and the concentration of surface Ce⁴⁺.

As the reaction reached the steady state, the NH concentration on surface would not

vary. Therefore:

$$\frac{d[NH]}{dt} = k_4[NH_2][Ce^{4+} = O] - k_5[NH][NO_{(g)}][Ce^{4+} = O] - k_6[NH][Ce^{4+} = O]$$

= 0 (218)

Thus, the NH concentration on the surface can be described as:

$$[NH] = \frac{k_4[NH_2]}{k_5[NO_{(g)}] + k_6}$$
(22S)

According to the **Reaction 5S**, the N_2O formation through the E-R reaction pathway can be described as:

$$\frac{d[N_2O]}{dt} = -\frac{d[NH]}{dt} = k_5[NH][NO_{(g)}][Ce^{4+} = O]$$
(238)

Therefore, according to $\mbox{Eq.22S},$ the N_2O formation can be transformed as follows:

$$\delta_{\text{NSCR}} = \frac{d[N_2O]}{dt} = \frac{k_4 k_5 [\text{NH}_2]}{k_5 [\text{NO}] + k_6} [\text{NO}_{(g)}] [\text{Ce}^{4+} = \text{O}]$$
$$= \frac{k_4 [\text{NH}_2] [\text{Ce}^{4+} = \text{O}]}{1 + \frac{k_6}{k_5 [\text{NO}_{(g)}]}}$$
(24S)

According to Eq.20S, the rate of C-O reaction can be described as:

$$\delta_{\text{C-O}} = \frac{d[\text{NO}]}{dt} = \frac{k_6 k_4 [\text{NH}_2]}{k_5 [\text{NO}_{(g)}] + k_6} [\text{Ce}^{4+} = \text{O}]$$

$$= \frac{k_4 [\text{NH}_2] [\text{Ce}^{4+} = \text{O}]}{\frac{k_5 [\text{NO}_{(g)}]}{k_6} + 1}$$
(258)

References

- 1. J. Li, H. Chang, L. Ma, J. Hao and R. T. Yang, *Catal. Today.*, 2011, **175**, 147-156.
- 2. L. Ma, C. Y. Seo, M. Nahata, X. Chen, J. Li and J. W. Schwank, *Appl. Catal. B: Environ.*, 2018, **232**, 246-259.
- 3. G. Busca, L. Lietti, G. Ramis and F. Berti, *Applied Catalysis B Environmental*, 1998, 18, 1-36.
- W. S. Kijlstra, D. S. Brands, H. I. Smit, E. K. Poels and A. Bliek, *Journal of Catalysis*, 1997, 171, 208-218.
- 5. S. Yang, Y. Liao, S. Xiong, F. Qi, H. Dang, X. Xiao and J. Li, *J Phys Chem C*, 2014, **118**, 21500-21508.